
Bedrock: Programmable Network Support
for Secure RDMA Systems

Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu,
Ziyang Yang, Hongyi Liu, Ang Chen

RDMA: Remote Direct Memory Access

2

• Traditional protocols involve software processing on remote CPUs
• RDMA enables reading/writing remote memory with CPU bypassing

• RNIC (RDMA NIC) performs DMA to application’s memory
• Can run over Ethernet with RoCEv2
• Has been widely deployed in clouds

Read
request

Traditional protocols

Ether
Header

IP
Header

UDP
Header Payload

Base
Transport
Header

RDMA
Header

RDMA over Converged Ethernet v2 (RoCEv2)

RDMA

Read
request

RNIC

Motivation: RDMA is insecure

3

• RDMA is designed for private usage with minimal security support
• Designed for HPC in private clusters; widely deployed in public clouds now

• Recent studies have revealed lots of vulnerabilities

Inadequate
security feature # Attack type Attack method

Source
authentication

S1 Illegal memory access QP spoof
S2 Illegal memory access Packet injection
S3 Denial of service Seq number error
S4 Denial of service QP error

Access control S5 Illegal memory access Access control bypass

Monitoring and
logging

S6 Denial of service QP exhaustion
S7 Perf. degradation BW exhaustion
S8 Side channel Evict + Reload
S9 Data exfiltration RDMA read

Insufficient RDMA-native security support

4

• RDMA is unencrypted; uses simple credentials (e.g., QPN, rKey)
• QPN and rKey are not randomly generated
• PSN has fixed initial values
• Easy to enumerate all possible values

Fixed initial values

rKey value generated by RNICs [1]

[1] Tsai, Shin-Yeh, and Yiying Zhang. "A Double-Edged Sword: Security Threats and Opportunities in One-Sided Network Communication." (HotCloud 19).

RDMA security mechanisms

Queue pair number (QPN)

Remote memory access key (rKey)

Packet sequence number (PSN)

Vulnerabilities

Not randomly generated

Not randomly generated

Length

24 bits

32 bits

24 bits

Example: Illegal memory access

5

• An attacker can access memory owned by others with right credentials

0x7ff1234

0x7ff2345

0x7ff3456

Owner=V
QPN = 111
rKey=0x100

Owner=M
QPN = 222
rKey=0x200

RDMA server

RDMA
Victim client

10.0.0.1

RDMA
Malicious client

10.0.0.2
IP=10.0.0.1
QPN=111

rKey=0x100

Challenges of end host solutions

6

Read
request

RNIC
Redesign RDMA protocol and RNIC

Read
request

Software security patch on CPUs
Negates the benefit of CPU bypassing

Requires intrusive changes of existing RDMA systems

Bedrock: RDMA security support in the network

7

• Bedrock provides RDMA security support in the network
• A platform with several security services
• Can be extended to support more security defenses
• Preserves CPU bypassing on the hosts
• Can be deployed immediately

Bedrock

…

8

Key enabler: Programmable switches

• Programmable switches are commercially available
• Programmed with high-level language, e.g., P4
• RDMA header parser, match-action tables, registers, ...

• Run at linespeed (Tbps)
• Have been widely used to build security defenses for traditional protocols:
• Jaqen-Security’21, FlowLens-NDSS’21, Ripple-Security’21, etc.

• We use it to provide security support for RDMA.

table rdma_log_tab {
key = {
rdma.qpn: exact;
rdma.addr: range;
rdma.op: exact;

}
actions = {Log; DoNothing;}

}

Source authentication using network invariants

9

• Key idea: Using topological invariants beyond attackers’ control
• Cloud network is trusted; network operators control the invariants (e.g., incoming port)

• Spoofed packets coming from wrong topological location will be dropped
• Attackers on the same machine? Invariants from qp creation (using eBPF)

Src IP Incoming port Action

10.0.0.1 1 accept

10.0.0.2 2 accept

…

default drop
Port 1

Port 2
Programmable switch

10.0.0.1

10.0.0.2

Pkt with 10.0.0.1

0x7ff1234

0x7ff2345

0x7ff3456

Owner=V
rKey=0x100

Owner=M
rKey=0x200

Flexible access control

10

• Ensure requests accessing the memory correctly
• Determine containing relationship of two ranges
• Hardware limits make it challenging

• Need to partition ranges to fit into the switch (20 bits per range field)
• Rule compression (rule granularity, table decomposition, exploiting SRAM)

read
read

write

0x7ff0000

0x7ffffff

Allocated memory

Read-only

start_addr

end_addr

ACL table on the switch

48-bit address

16-bit 16-bit 16-bit

Range partition

table rdma_acl_tab {
key = {

rdma.s_addr: range;
rdma.e_addr: range;
rdma.op: exact;

}
actions = {Allow; Deny;}

}

Regain visibility by monitoring and logging

11

Monitoring:
On-path traffic monitoring to detect anomaly

Logging:
Extract key info to logging servers for forensics

Bedrock defends against nine attacks

12

Inadequate security
feature # Attack type Attack method

Source authentication

S1 Illegal memory access QP spoof
S2 Illegal memory access Packet injection
S3 Denial of service Seq number error
S4 Denial of service QP error

Access control S5 Illegal memory access Access control bypass

Monitoring and logging

S6 Denial of service QP exhaustion
S7 Perf. degradation BW exhaustion
S8 Side channel Evict + Reload
S9 Data exfiltration RDMA read

• Experimental testbed:
• NIC on all machines: Mellanox ConnectX-4 MT27710 25Gbps (with RoCEv2)
• Switch: Wedge 100BF-32X Tofino switch

✓

Access control rule compression

13

• Need to enhance security despite limited resources
• Naïve implementation without optimization only supports 5000 ACL rules
• Bedrock’s optimizations increase ACL rules by 7x

Twitter Idiada Arctur
0

6
8

10
12
14
16

Workload

Su
pp

or
te

d
#r

ul
es

 (*
10

00
)

4
2

The higher
the better

With Opt.
Without Opt.

Conclusion

14

• Motivation: Mitigating RDMA vulnerabilities
• Opportunity: Programmable switches
• Complement the missing on-path defense for RDMA

• Bedrock: In-network RDMA security suite
• Support authentication, access control, monitoring, logging
• Effective against attacks
• Immediately deployable
• Extensible against future attacks

• Evaluation:
• Mitigates nine RDMA attacks effectively with minimal perf. overhead!

• Source code: https://github.com/alex1230608/Bedrock

Thanks!

https://github.com/alex1230608/Bedrock

