Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

Jiarong Xing¹², Leyuan Wang¹, Shang Zhang³, Jack Chen³, Ang Chen², Yibo Zhu¹ ByteDance¹, Rice University², NVIDIA³

Auto-tuners accelerate inference

- Neural networks are becoming more complex
 - Prediction accuracy has been improved
 - Makes it challenging for inference speed
- Auto-tuners are used to improve inference efficiency
 - E.g., AutoTVM, Ansor
 - End-to-end optimizations automatically for faster inference

Auto-tuner rationale

Black-box hardware

- Operate with opaque hardware models
- Workflow
 - The approximate cost model which will be improved gradually
 - Search for better implementations using the current model
 - Generate implementations and measure the actual performance
 - Improve the cost model and iterate again

Inefficiency of existing auto-tuners

Neural networks	Tuning time (hours)		
ResNet-18	11.8		
ResNet-50	15.8		
RepVGG-A0	4.4		
RepVGG-B0	4.6		
VGG-16	19.1		
VGG-19	18.8		

Tuning time on a single NVIDIA T4 GPU

Workload(M,N,K)

- Hardware-agnostic approaches have inefficiencies:
 - Long tuning time
 - Take hours to days to tune a model
 - Challenging for rapid model iterations
 - Ineffective usage of hardware resources (e.g., tensor core)
 - Low performance for compute-intensive workloads, e.g., FP16 GEMMs, Conv2Ds.
 - Hard to achieve hardware-native performance, e.g., cuBLAS, cuDNN.

An emerging trend: Templated libraries

- Vendor libraries are becoming modularized and composable
- Make it possible for flexible high-performance auto tuning
 - Easily parameterized for different tensor shapes
 - Reusable primitives with hardware-native performance
 - Amenable to a tighter integration with auto-tuning
 - Extendible to new primitives

Example: CUTLASS on NVIDIA GPUs

- CUDA C++ templates for high-performance GEMM and related computations
- Key techniques: Hierarchical decomposition + careful data movement
- Support various GPU architectures and data types.
 - Volta, Turing, and Ampere, etc.
 - B1, INT4, INT8, FP16, BF16, FP32, TF32, FP64, complex, and quaternion

A Conv2D kernel template in CUTLASS

/// Define an Implicit GEMM convolution forward propagation (fprop) kernel					
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<					
ElementInputA,	//	data type of element a (mapped to activation for fprop)			
LayoutInputA,	//	layout of element a (mapped to activation for fprop)			
ElementInputB,	//	data type of element b (mapped to filters for fprop)			
LayoutInputB,	//	layout of element b (mapped to filters for fprop)			
ElementC,	//	data type of element c (mapped to output for fprop)			
LayoutC,	//	layout of element c (mapped to output for fprop)			
ElementAccumulator,	//	data type of internal accumulation			
MMAOp,	//	opcode class tag			
SmArch,	//	target SM architecture			
ThreadblockShape,	//	shape of threadblock tile			
WarpShape,	//	shape of warp-level GEMM tile			
InstructionShape,	//	shape of target math instruction			
EpilogueOp,	//	epilogue operator			
SwizzleThreadBlock,	//	optional function to reorder threadblocks for locality			
NumStages,	//	number of pipeline stages in threadblock-scoped GEMM			
cutlass::arch::OpMultiplyAddSaturate,	//	math operation on data of element a and b			
cutlass::conv::IteratorAlgorithm::kAnalytic	//	globabl memory iterator algorithm			
>::Kernel					

- Composable template with manifold tunable parameters
- No end-to-end auto-tuning support
 - Templates must be tuned and invoked manually by developers
 - Repeat for each operator, workload, and hardware

A gap between auto-tuners and templated libraries

Auto-tuners

- + e2e auto optimization
- inefficient for certain workloads

Templated libraries

- + good performance and extensibility
- - no e2e auto support

Bridging the gap with Bolt

Auto-tuners

Templated libraries

- The best of both worlds
 - Automatic end-to-end model optimization
 - Hardware-native performance
- Key features
 - Faster auto-tunning + tensor code generation
 - Deeper operator fusion
 - System-model co-design insights

The workflow of Bolt

- Build an auto-tuner from scratch takes a lot of efforts
- Adopt the TVM BYOC approach (Bring Your Own Codegen)

Efficient auto-tuning

Hardware-agnostic approach

- Problem: Current auto-tuners take long to tune a model
 - Hardware-agnostic approach, large search space
- Solution: Hardware-aware approach (reduce tuning time to minutes)
 - Search over template parameters
 - Utilize hardware knowledge to reduce search space
 - Within the capacity of RF, large warp sizes can achieve higher compute-memory ratio
 - Small threadblock sizes for small problem sizes to keep more SMs busy

•

Templated code generation

- Bolt generates CUDA code in the CUTLASS convention directly
 - Can reach 300 TFLOPS throughput for FP16 GEMM on A100
 - More than 95% of the hardware theoretic limit
- Optimizations:
 - Layout transformation (NCHW to NHWC)
 - Kernel padding: 8, 4, 2, 1 alignment

Deeper operator fusion

- Operator fusion: Merging back-to-back operators to improve performance
- Existing methods cannot fuse back-to-back GEMMs/Convs
- Deeper operator fusion in Bolt:
 - Fusing two or more back-to-back GEMMs/Convs
 - Achieved by extending hardware-native templates

Key ideas of deeper fusion

- Key idea:
 - Compute the second GEMM without loading its input from the global memory
 - Output threadblock of the 1st GEMM in the same threadblock as input for the 2nd GEMM
- Threadblock residence
 - GEMM: ThreadBlock_N = GEMM_N
 - Conv2D: ThreadBlock_N = # output channels

N1

Thread

block

D1

GEMM 1

Thread

block

GEMM 0

W1

Υ Σ

Two threadblock residence implementations

- RF-based fusion:
 - ThreadBlock_N = GEMM_N = Warp_N
 - High RF pressure and constraints on kernel choices
- Shared memory-based fusion:
 - Relax the constraint of ThreadBlock_N = Warp_N
- Bolt hides the low-level implementations from users

Evaluation

- Setup:
 - NVIDIA T4 GPU + TVM-BYOC+CUTLASS
 - FP16 workloads
 - Baseline: Ansor-OSDI'20
- Experiments:
 - GEMM and Conv2D speed
 - Deeper operator fusion performance
 - End-to-end model performance

GEMM and Conv2D speed

- GEMM workload: Square GEMMs + Bert.
- Conv2D workload: ResNet-50. Kernel size=3*3, bs=32, (1,1) zero padding.
- Speedup: 6.1-9.5x(1.9x) for GEMMs, 2.7-3.5x for Conv2Ds

Deeper operator fusion performance

1st GEMM		2nd GEMM			Normalized speed		
М	N	K	M	Ν	K	w/o fuse.	w/ fuse.
2464	1	4	2464	4	1	1.00	1.24
16384	64	256	16384	16	64	1.00	1.34
32768	128	576	32768	64	128	1.00	1.28
128320	32	96	128320	96	32	1.00	1.46

3×3 Conv2D		1×1 Conv2D		Normalized speed		
H, W	IC, OC	strides	H, W	IC, OC	w/o fuse.	w/ fuse.
224^{2}	3, 48	(2, 2)	112^2	48, 48	1.00	1.10
112^{2}	48, 48	(2, 2)	56^{2}	48, 48	1.00	1.41
56^{2}	48, 48	(1, 1)	56^{2}	48, 48	1.00	1.87
224^{2}	3, 64	(2, 2)	112^2	64, 64	1.00	1.24
112^{2}	64, 64	(2, 2)	56^{2}	64, 64	1.00	1.12
56^{2}	64, 64	(1, 1)	56^{2}	64, 64	1.00	2.02

- Baseline: Bolt without deeper operator fusion.
- GEMM1 + ReLU + GEMM2 + ReLU
 - Recommendation models: DCNv2, DLRM
- Conv2D1+BiasAdd+ReLU+Conv2D2+BiasAdd+ReLU
 - RepVGG-A0 and A1
- Speedup: 1.2x-1.5x for GEMM, 1.1x-2.0x for Conv2D

End-to-end model optimization

- Bolt is 4.2x faster on VGG models, 1.5x faster on ResNet models, and 2.6x faster on RepVGG models.
- Bolt can finish the tuning within 20 minutes for all models while Ansor takes 12 hours on average.

Summary

- A gap between auto-tuners and templated libraries
 - Automatic end-to-end optimization vs. hardware-native performance
- Bolt: Bridging the gap between them
 - Efficient auto-tunning and code generation
 - Deeper operator fusion
 - System model co-design insights
- Evaluation:
 - Bolt can improve the inference speed and reduce tuning time significantly.
- Code: https://github.com/apache/tvm/pull/9261

Thanks!