
Bolt: Bridging the Gap between Auto-tuners and
Hardware-native Performance

Jiarong Xing12, Leyuan Wang1, Shang Zhang3, Jack Chen3,
Ang Chen2, Yibo Zhu1

ByteDance1, Rice University2, NVIDIA3

Auto-tuners accelerate inference

2

• Neural networks are becoming more complex
• Prediction accuracy has been improved
• Makes it challenging for inference speed

• Auto-tuners are used to improve inference efficiency
• E.g., AutoTVM, Ansor
• End-to-end optimizations automatically for faster inference

Accuracy

Speed

Ansor

Auto-tuners

Auto-tuner rationale

3

• Operate with opaque hardware models
• Workflow

• The approximate cost model which will be improved gradually
• Search for better implementations using the current model
• Generate implementations and measure the actual performance
• Improve the cost model and iterate again

ImplementationsApproximate cost model

Black-box hardware

Search for better
implementations

Inefficiency of existing auto-tuners

4

• Hardware-agnostic approaches have inefficiencies:
• Long tuning time

• Take hours to days to tune a model
• Challenging for rapid model iterations

• Ineffective usage of hardware resources (e.g., tensor core)
• Low performance for compute-intensive workloads, e.g., FP16 GEMMs, Conv2Ds.
• Hard to achieve hardware-native performance, e.g., cuBLAS, cuDNN.

Neural networks Tuning time (hours)

ResNet-18 11.8

ResNet-50 15.8

RepVGG-A0 4.4

RepVGG-B0 4.6

VGG-16 19.1

VGG-19 18.8

Tuning time on a single NVIDIA T4 GPU

An emerging trend: Templated libraries

5

• Vendor libraries are becoming modularized and composable
• Make it possible for flexible high-performance auto tuning

• Easily parameterized for different tensor shapes
• Reusable primitives with hardware-native performance
• Amenable to a tighter integration with auto-tuning
• Extendible to new primitives

Fixed primitive
libraries

Modularized and
composable
templates

Vendor expert Declarative
parameters

Hardware-native
performance

+

+ + …

Customized templates

Example: CUTLASS on NVIDIA GPUs

6

• CUDA C++ templates for high-performance GEMM and related computations
• Key techniques: Hierarchical decomposition + careful data movement
• Support various GPU architectures and data types.

• Volta, Turing, and Ampere, etc.
• B1, INT4, INT8, FP16, BF16, FP32, TF32, FP64, complex, and quaternion

CUTLASS: https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

A Conv2D kernel template in CUTLASS

7

• Composable template with manifold tunable parameters
• No end-to-end auto-tuning support

• Templates must be tuned and invoked manually by developers
• Repeat for each operator, workload, and hardware

8

A gap between auto-tuners and templated libraries

Auto-tuners

• + e2e auto optimization

• - inefficient for certain
workloads

Templated libraries

• + good performance
and extensibility

• - no e2e auto support

9

Bridging the gap with Bolt

• The best of both worlds

• Automatic end-to-end model optimization

• Hardware-native performance

• Key features

• Faster auto-tunning + tensor code generation

• Deeper operator fusion

• System-model co-design insights

Auto-tuners Templated libraries

10

The workflow of Bolt

• Build an auto-tuner from scratch takes a lot of efforts

• Adopt the TVM BYOC approach (Bring Your Own Codegen)

Deeper operator fusion

Performance profiler

TVM relay graph

Optimized relay graph

Bolt subgraph TVM subgraph

Code generation
Codegen

Tensor program

…DNN model

Graph-level optimization

Tensor-level optimization

System-model codesign

Graph partition

11

Efficient auto-tuning

• Problem: Current auto-tuners take long to tune a model

• Hardware-agnostic approach, large search space

• Solution: Hardware-aware approach (reduce tuning time to minutes)

• Search over template parameters

• Utilize hardware knowledge to reduce search space

• Within the capacity of RF, large warp sizes can achieve higher compute-memory ratio

• Small threadblock sizes for small problem sizes to keep more SMs busy

• …

Hardware-agnostic approach Hardware-aware approach

12

Templated code generation

• Bolt generates CUDA code in the CUTLASS convention directly

• Can reach 300 TFLOPS throughput for FP16 GEMM on A100

• More than 95% of the hardware theoretic limit

• Optimizations:

• Layout transformation (NCHW to NHWC)

• Kernel padding: 8, 4, 2, 1 alignment

Generate CUDA code Layout transformation Padding

13

Deeper operator fusion

• Operator fusion: Merging back-to-back operators to improve performance

• Existing methods cannot fuse back-to-back GEMMs/Convs

• Deeper operator fusion in Bolt:

• Fusing two or more back-to-back GEMMs/Convs

• Achieved by extending hardware-native templates

GEMM1 Bias ReLU GEMM2 Bias ReLU

Non-fused:

GEMM1_Bias_ReLU

Epilogue fusion:

GEMM2_Bias_ReLU GEMM1_Bias_ReLU_GEMM2_Bias_ReLU

Deeper fusion in Bolt:

14

Key ideas of deeper fusion

• Key idea:

• Compute the second GEMM without loading its input from the global memory

• Output threadblock of the 1st GEMM in the same threadblock as input for the 2nd GEMM

• Threadblock residence

• GEMM: ThreadBlock_N = GEMM_N

• Conv2D: ThreadBlock_N = # output channels

Thread
block

Thread
block

M

K0

K
0

N0

K
1

N1

A0

W0
W1

D0 D1

GEMM 0 GEMM 1

𝐷0 = 𝛼0𝐴0 ∙ 𝑊0 + 𝛽0𝐶0, 1
𝐷1 = 𝛼1𝐷0 ∙ 𝑊1 + 𝛽1𝐶1, 2

Definition of two GEMM fusion

Thread
block

15

Two threadblock residence implementations

• RF-based fusion:

• ThreadBlock_N = GEMM_N = Warp_N

• High RF pressure and constraints on kernel choices

• Shared memory-based fusion:

• Relax the constraint of ThreadBlock_N = Warp_N

• Bolt hides the low-level implementations from users

Register file-based fusion

……

Warp (RF) Warp (RF)

(RF)

(SMEM)
(SMEM)

ThreadBlock of GEMM 1

W0
W1

D0/A1 tile D1 tileA0 tile

(SMEM)

Shared memory-based fusion

……

Warp Warp

(RF)

(SMEM)
(SMEM)

ThreadBlock of GEMM 1

W0
W1

D0/A1 tile D1 tileA0 tile

(SMEM)
Warp Warp

(RF)

16

Evaluation

• Setup:

• NVIDIA T4 GPU + TVM-BYOC+CUTLASS

• FP16 workloads

• Baseline: Ansor-OSDI’20

• Experiments:

• GEMM and Conv2D speed

• Deeper operator fusion performance

• End-to-end model performance

GEMM and Conv2D speed

17

• GEMM workload: Square GEMMs + Bert.

• Conv2D workload: ResNet-50. Kernel size=3*3, bs=32, (1,1) zero padding.

• Speedup: 6.1-9.5x(1.9x) for GEMMs, 2.7-3.5x for Conv2Ds

9.5x 3.5x

Deeper operator fusion performance

18

• Baseline: Bolt without deeper operator fusion.

• GEMM1 + ReLU +GEMM2 + ReLU

• Recommendation models: DCNv2, DLRM

• Conv2D1+BiasAdd+ReLU+Conv2D2+BiasAdd+ReLU

• RepVGG-A0 and A1

• Speedup: 1.2x-1.5x for GEMM, 1.1x-2.0x for Conv2D

End-to-end model optimization

19

• Bolt is 4.2x faster on VGG models, 1.5x faster on ResNet models, and 2.6x
faster on RepVGG models.

• Bolt can finish the tuning within 20 minutes for all models while Ansor takes 12
hours on average.

Summary

20

• A gap between auto-tuners and templated libraries

• Automatic end-to-end optimization vs. hardware-native performance

• Bolt: Bridging the gap between them

• Efficient auto-tunning and code generation

• Deeper operator fusion

• System model co-design insights

• Evaluation:

• Bolt can improve the inference speed and reduce tuning time significantly.

• Code: https://github.com/apache/tvm/pull/9261

Thanks!

https://github.com/apache/tvm/pull/9261

