
Secure State Migration in the Data Plane

Jiarong Xing
Rice University

Ang Chen
Rice University

T.S. Eugene Ng
Rice University

ABSTRACT

Programmable data planes enable stateful packet processing at

hardware speedsÐa new capability central to many recent systems.

However, protocols and systems that effectively manage data plane

state remain underexplored. This paper considers the problem of

secure state migration, which can serve as an important building

block for state management tasks. It delivers data plane state from

a source switch to a destination effectively without a software

controller, while providing strong cryptographic guarantees on

authenticity. Our protocol, P4Sync, tackles several technical chal-

lenges, such as adapting memory copy techniques in VMmigration,

offloading per-packet security operations to the data plane, and

amortizing heavyweight cryptographic overheads over a batch of

packets. Our initial validation shows that P4Sync has low traffic

and memory overheads.

CCS CONCEPTS

· Networks → Programmable networks; · Security and pri-

vacy → Security protocols.

KEYWORDS

Programmable data planes, P4, State migration, Stream authentica-

tion, Network security

ACM Reference Format:

Jiarong Xing, Ang Chen, and T.S. Eugene Ng. 2020. Secure State Migration in

the Data Plane. In ACM SIGCOMM 2020 Workshop on Secure Programmable

Network Infrastructure (SPIN 2020) (SPIN ’20), August 14, 2020, Virtual Event,

NY, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/340566

9.3405822

1 INTRODUCTION

A recent advance in networking technology is the development of

programmable data planes [11]. Unlike traditional fixed-function

switches, recent switch hardware can be reconfigured using high-

level languages, such as P4 [5], PoF [49], and NPL [4]. Users can

realize a wide range of packet processing behaviors that were pre-

viously only implementable in controller software. In addition to

supporting customized headers and protocols, a prominent feature

of programmable data planes is stateful packet processing. A typi-

cal programmable switch has O(10MB) stateful memory. A switch

program can allocate register arrays from memory, and these regis-

ters can be updated on a per-packet basis. Moreover, as long as a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPIN ’20, August 14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8041-6/20/08. . . $15.00
https://doi.org/10.1145/3405669.3405822

switch program compiles successfully to a target, the program is

guaranteed to run at Tbps linespeed.

Data plane programmability has enabled an array of tasks to

run directly inside the network. Recent use cases include network

measurement and monitoring [58], network security [28, 38, 56,

57], load balancing [25, 29, 39], and failure detection and diagno-

sis [19, 24]. Stateful packet processing is central to many of these

in-network tasks. Depending on the specific application, the par-

ticular form of state may varyÐe.g., some tasks rely on per-flow

state for access control [28] or covert channel defense [56], other

tasks keep per-destination state for load balancing [25, 29], and

yet others may accumulate state per-packet for fine-grained mon-

itoring [48]. In each case, the network data plane can change the

packet processing behavior dynamically without having to con-

sult a central controller. This stands in stark contrast to traditional

OpenFlow networks, where stateful processing happens mostly in

control plane software.

Managing in-network data plane state, however, poses signif-

icant challenges. In an OpenFlow network, the centralized con-

troller has a global view, and it plays an important role in state

management tasks. In this context, a rich body of work has been

developed centering around managing [15, 16, 43, 54, 59] and up-

dating [17, 35, 44] network state in centralized SDN. In contrast, the

counterparts of these algorithms in the setting of programmable

data planes are much less well-understood. A strawman solution

is to fall back to a centralized or switch-local controller, but this is

often unattractive, as the control loop would significantly offset the

benefit of keeping state in the data plane. Whereas data plane state

can change per-packet at Tbps, control plane solutions operate at

much larger timescales, and are therefore a poor fit for data plane

state management.

In this paper, we consider the problem of secure state migration.

Although data plane state management entails broader challenges,

this primitive is an important building block for this general di-

rection. Our goal is to develop a protocol for a switch to transfer

its state to one or more destination switches effectively without

involving a central controller, while providing strong integrity guar-

antees on the authenticity of the data and its sender. Many existing

systems motivate the need for such a protocol: Contra [25] and

Hula [29] require switches to propagate performance metrics across

the network; FastFlex [57] requires switches to propagate attack

detection results; and Swing State [37] develops program analysis

techniques to identify state for migration, and sketches the first

design for state migration. We design a new protocol that draws

inspirations from live VMmigration [12, 13, 32, 34, 47, 52, 55], while

tackling practical challenges introduced by the P4 programming

model.

Moreover, an important feature of our protocol is that it provides

strong authenticity guarantees on the migrated state. Traditional

control plane solutions can easily perform authentication on net-

work state using cryptography, guaranteeing that received data has

SPIN ’20, August 14, 2020, Virtual Event, NY, USA Jiarong Xing, Ang Chen, and T.S. Eugene Ng

indeed originated from the sender and that it has not been tampered

with. However, when migrating state entirely in data plane, ensur-

ing data authenticity is much harder. Programmable data planes

have a restricted programming model, and they do not have built-

in support for cryptography. Extending the programming model,

whether using extern cryptographic hardware modules or using

control plane CPUs, is possible but still insufficient: standard sig-

nature schemes such as RSA are inherently too slow to perform

over high-speed data. Our proposal develops support by marry-

ing two lines of work: a thread of work in search for lightweight

cryptographic functions implementable in the P4 programming

model [14, 23, 46], and another on authenticating data streams by

amortizing signature overhead over a set of packets [41, 42].

The resulting protocol, P4Sync, is a principled design that can

securely transfer data plane state with low overhead. Concretely,

P4Sync first copies the main register arrays end-to-end using the

switch packet generator with appropriate rate control. During this

process, additional dirtied data is buffered in an auxiliary register

array for aggregation, and is then copied in a similar fashion. To

authenticate migration packets, P4Sync builds a hash chain by

attaching each migration packet with a hash value that is computed

using the content of this packet and the hash value of the last packet.

The receiver can verify the integrity of this hash chain using per-

packet data plane operations in the normal case. Finally, P4Sync

relies on the control plane to sign the end of the chain using a

public key signature, authenticating the entire migration sequence.

We develop a prototype based on the P4 bmv2 model, evaluate its

effectiveness, and release the source code [6].

2 THE STATE MIGRATION PROBLEM

Wegive amore precise statement of the problem, and outline several

design requirements for state migration.

2.1 Problem statement

The goal of state migration is to transfer a snapshot of stateful

memory St from a source switch src to a destination switch dst . In

programmable data planes, state St resides in a set of register arrays

R1, · · · ,Rn . Each register array, Ri , i ∈ [1..n], has a pre-defined size

si that is fixed at compilation time; and it can be indexed by an

integer j ∈ [1..n], where Ri j is the j-th register of Ri . We denote

the largest array size as smax = max{s1, · · · , sn }. State migration

could be periodic events. One round of migration finishes when the

destination switch has received St from the source switch. Across

different rounds of migration, the source and destinations may

also be different. Importantly, our definition is independent of the

structure of the state (e.g., whether the registers are used as counters

or part of a more advanced data structure, such as a count-min

sketch or a bloom-filter); it is also independent from how state is

used (e.g., whether a register is read-only or read-write, or registers

may depend on each other).

Completeness. As a basic requirement, a migration protocol

should guarantee that the state is completely copied from src to

dst in each round. Achieving completeness in the migrated state

would first require that the network provides reliable data trans-

fer. This can be achieved by, e.g., prioritizing migration messages,

adding FEC for error correction, and using acknowledgment and

retransmission mechanisms on the migrated data. It also requires

the migration protocol to sweep through the state efficiently in a

systematic fashion.

Authentication. Furthermore, a receiver needs a way to check

the integrity of the migrated data and to ensure that it comes from

an authenticated sender. Symmetric cryptography, where the sender

and receiver use a shared key for encryption and decryption, cannot

provide non-repudiation guarantees in sender authentication. This

is because any party holding the secret key could easily forge a

message. In order to enable fault attributionÐi.e., the ability to

present cryptographic evidence that non-repudiably links amessage

to its senderÐwe need public key cryptography.

Overhead. Last but not least, the migration traffic should incur

low overhead, because it shares the same network infrastructure

with normal user traffic. Ideally, the migration protocol can dy-

namically control the rate of migration traffic, preventing potential

congestion or microbursts.

2.2 State of the art & Limitations

Designing a migration protocol that achieves completeness, au-

thentication, and low overhead presents unique challenges. As we

discussed, only nascent work exists that consider managing data

plane state [37, 51]. A notable project, Swing State [37], outlines a

partial solution for state migration.

Swing state. The key insight of Swing State [37] is that reg-

ister values can be piggybacked on network traffic, and that the

migration traffic could be tunneled to the destination switches by

header modifications in data plane. Concretely, consider migrating

a register array Ri of size si . Swing State uses normal user traffic

to piggyback values in the registers that packets may access. If a

packet accesses register Ri j , then the switch clones this packet into

two copies. One of these copies is sent to the original destination.

The second copy is tagged with the value of Ri j as a special header,

and sent to the migration destination.

Limitations. Swing State provides an interesting insight on

leveraging network traffic for migration, but it also has notable

limitations. Completeness: There is no guarantee that the migration

will eventually transfer a complete snapshot of the sender state,

because packets access the register array randomly and this may

not cover the entire range. Overhead: As a result, the migration

may take a long (or an indefinite amount of) time until all registers

have been accessed by some packets. During this migration period,

updates to the register array have to be repeatedly sent to the

receiver. This causes high overhead. Authentication: Swing State

also does not consider data or sender authentication.

3 THE P4SYNC MIGRATION

P4Sync builds upon the insight from Swing StateÐthat we could

migrate data plane state as packet headers. However, achieving the

target properties in Section 2 requires a very different design. In

this section, we describe the migration protocol, which is inspired

by memory copy techniques developed in the context of live VM

migration [12]; next section discusses authentication. Like Swing

State, we assume that packet loss will be handled by out-of-band

mechanisms, either using high priority for migration traffic or by

retransmissions.

Secure State Migration in the Data Plane SPIN ’20, August 14, 2020, Virtual Event, NY, USA

128 256 56

Rate controlled

traffic generator

prog_indx

24

User

traffic

Ether IPv4 Val=256

Main array

Delta array

(1) Main array copy

388 256 76

Rate controlled

traffic generator

24

User

traffic

Ether IPv4 Val=24

(2) Delta array copy

prog_indx

Main array

Delta array

Figure 1: The key components of the P4Sync design.

3.1 Roadmap

The goal of our protocol is to transfer program stateÐregister arrays

in programmable data planesÐfrom the source to the destination,

while minimizing traffic overhead and the impact on normal user

traffic. Figure 1 shows the key components of the protocol, which

we detail next:

• Copying the main array: For each register array, P4Sync

copies all its elements by sweeping through the registers,

and attaching state on migration packets. Our data plane

design maintains a progress index, which points to the next

register to be copied, and advances it for each migration

packet. If no packets update the registers during the copy,

then the migration completes after the progress index points

to the end of the array.

• Incremental copy: However, user traffic might update the

main array as we perform the copy. If a register is updated

after the first copyÐi.e., the write location is smaller than

the progress index, the register becomes łdirtyž. We record

the updated delta into an auxiliary data structureÐa delta

array δ . The delta values are buffered for aggregation, and

P4Sync sweeps through δ when the main copy finishes.

• Point-in-time snapshot. After P4Sync has transferred the last

element in δ , it has migrated a łpoint-in-timež consistent

snapshot [31], i.e., at this point in time, the sender has com-

pletely copied the state to the receiver. When copying δ , we

pause any updates to δ ; any subsequent updates to the main

array will only be captured in the next migration round.

• Rate control: P4Sync uses the switch packet generator [7, 8,

60] to create migration packets, and controls the migration

rate by adjusting the generator frequency. The rate control

mitigates potential impact on normal traffic.

Unlike VM migration, which is typically one-shot, data plane pro-

tocols [25, 28, 57] usually migrate state periodically. In each round,

the above protocol is invoked for efficient and complete migration.

Migration from one source to multiple destinations can be handled

using a similar protocol, with migration packets multicast to all

destinations.

3.2 Achieving migration completeness

Programmable data planes, unlike multicore CPUs, do not have

concurrency in terms of multithreading. Rather, they process one

packet at a time, only allowing pipeline parallelism. However, mod-

ern switches have hardware packet generators [7, 8, 60] that can

send traffic at tunable speeds. P4Sync leverages this source of con-

currency to harness a thread of execution for state migration. It

triggers the generator to send
∑
{si }, i ∈ [1..n] packets for the main

copy, which migrates registers in Ri , i ∈ [1..n]. The prog_indx

index guides the migration packets into the right slots to attach

state, and the index is incremented by each migration packet. The

same progress index can be reused across register arrays, by using

an additional register to hold the ID of the current array under

migration.

Compared to Swing State [37], which uses normal traffic for

migration, leveraging the packet generator leads to several desirable

propertiesÐwe can easily control the migration rate, and also avoid

potential microbursts and congestion.

3.3 Minimizing migration overhead

Next, we need to handle registers that have been łdirtiedž once

again after they have beenmigrated in the main copy. The canonical

approach in VM migration is to use a bitmap to keep track of dirty

elements, and to iteratively migrate dirtied data until no more

updates are made. However, this assumes that the program has a

small working set, so fewer and fewer elements become dirty as we

incrementally copy. But this is typically not the case for data plane

state, since indexes to register arrays may be computed by CRC

functions and produce random accesses. In other words, the dirty

rate is very high and the working set could be as large as the entire

memory.

P4Sync handles this by tracking dirty data using an auxiliary reg-

ister array δ , whose length is smax . If a write index is smaller than

prog_indx, this register becomes dirty, and the delta is recorded

in δ at the same index. Whether dirty or not, all writes to the main

array are immediately effective and they are never stalled by mi-

gration. This δ array buffers and coalesces additional writes to

reduce migration traffic. When P4Sync has migrated a main array,

it proceeds to copy the delta array.

When copying δ , this array is not updated by additional writes

any more. Rather, modifications to the main array will only be

reflected in the next round of migration. P4Sync sweeps through

δ using an index, and completes a point-in-time consistent [31]

snapshot by the time δ has been migrated. Since δ is shared by all

register arrays, we have a constraint that we can only migrate main

arrays sequentially one after another. In the case where the switch

memory has enough resources to hold a δ array for each main array,

then P4Sync can migrate all arrays in parallel by attaching multiple

register values to the same migration packet.

3.4 Controlling migration rate

Another critical aspect of state migration is rate control, similar

as in VM migration [12]. This is because migration traffic may

cause collateral damage to normal user trafficÐadditional traffic

may produce congestion or packet drops, or they may cause mi-

crobursts in the switch buffers. P4Sync controls migration traffic

rate by configuring the packet generator depending on the network

condition. Suppose that we want the rate to be lower than Rm , and

SPIN ’20, August 14, 2020, Virtual Event, NY, USA Jiarong Xing, Ang Chen, and T.S. Eugene Ng

the migration to finish within ϵt ; and further assuming a propaga-

tion delay of d , a total state size of Sr eд , and a migration packet

size of Spkt , then the packet generation frequency could be set to

Rm/Spkt ≤ Pдen ≤ (ϵt − d)/(Sr eд + Sδ). In addition, migration

traffic could be load-balanced across multiple ports, e.g., using least-

utilized switch ports at any given moment [21], to avoid creating

network congestion.

4 THE P4SYNC AUTHENTICATION

Next, we describe how P4Sync performs efficient authentication to

provide non-repudiation.

4.1 The threat model

We assume that the operator has deployed a correct migration

protocol with a reasonable migration speed, and that the sender

and the receiver switches are trusted, but other switches and links

are not. The attacker’s goal is to disrupt the functionalities of data

plane applications by tampering with the migration protocol, either

by modifying migration traffic maliciously or injecting/replaying

spoofed packets via compromised switches or hosts. Under these

assumptions, the attacker can launch at least three different types

of attacks:

On-path tampering attacks. The adversary can attack the net-

work by sniffing and tampering with the migration packets directly.

For example, in Contra [25], a load balancing system, switches

exchange migration packets that carry link utilization metrics to

compute least-utilized routes. The attacker can cause load imbal-

ance or even forwarding loops in the network by capturing and

then modifying the link utilization data. She can also broadcast

spoofed messages to say that a specific link in the network has very

low utilization, causing large volume of traffic to be routed to that

link; this would in effect launch a link-flooding attack [27, 50].

Off-path injection attacks. The attacker is also able to inject

spoofed migration packets off-path. For instance, FastFlex [57] pro-

poses a decentralized link-flooding defense in the data plane, where

switches synchronize their reports on malicious flows with each

other for network-wide defense. The attacker can inject spoofed

synchronization packets, so that the switches misidentify legitimate

flows to be malicious, causing them to be penalized or dropped. In

addition, she can also launch łBGP poisoningž style [10] attacks to

attract traffic to a link that she controls.

Replay attacks. An attacker can also capture legitimate migra-

tion packets from an authenticated switch, and re-injects them into

the network later. It is well-known that replay attacks can be effec-

tive even when authentication mechanisms are in place [33]. As

an example attack, consider Poise [28], which is an access control

system that grants or denies access to network requests based on

special łcontextž packets from clients. An attacker may be able to

replay such packets to gain privileged permissions.

4.2 Efficient stream authentication

We now discuss how we authenticate a stream of migration pack-

ets efficiently. The starting point of our design is a protocol called

EMSS [41], which considers the problem of performing efficient au-

thentication over a stream of packets while avoiding the overhead

of performing one public key signature per packet. Using this mech-

anism, P4Sync attaches a hash value to every migration packet. The

hash value for the i-th packet is computed as h(i) = h(P ,h(i − 1)),

where P is the current packet and h(i − 1) is the hash value of the

previous packet. The receiver will therefore receive a chain of hash

values, and can verify whether or not the hash chain is correctly

constructed. Any incorrect hash values will cause the entire chain

to be invalidated. At the end of the stream, the sender switch gen-

erates a special EOS (end of stream) packet that carries a public key

signature of the final hash value. The receiver, using the public key

of the sender, verifies whether or not this value authenticates the

stream that has been received so far. We assume that the sender

and receiver switch have exchanged their keys securely.

A special consideration is to handle transient states during mi-

gration and authentication. Since state transfer takes time to finish,

there are two types of transient state. First, there will be a period

of time during which the state has not been completely transferred.

Therefore, the receiver state is only a subset of the sender state;

this transient state is unavoidable. Second, there is a delay between

the time when the destination receives the full state and the time

when it receives the RSA signature. This is because the public key

signature requires control plane involvement on a switch. On a

modern CPU, it takes 1.5ms to generate a RSA-2048 signature [26].

If the receiver only starts using the data after receiving the RSA sig-

nature, this would create O(ms) additional latency. P4Sync allows

receivers to start using unauthenticated data in this transient state,

but quickly detects any tampering with a O(ms) delay. We believe

that this is a reasonable tradeoff, because such an attack can only

cause milliseconds of disruption. As soon as an attack is detected

(e.g., RSA signature verification fails), the receiver raises an alarm

to the operator and reports the attack.

In order to defend against replay attacks, P4Sync uses sequence

numbers for the epochs and the migration packets per epoch. Con-

cretely, time is divided into epochs, and each epoch has a unique

ID epoch. Within each epoch, migrated state is associated with a

sequence number seq, e.g., the register array ID and the progress

index. An <epoch, seq> pair will uniquely identify the state sequence,

and epoch and seq can only increase with time. Therefore, if an at-

tacker replays an old packet of which the <epoch, seq> are outdated,

the receiver will correctly reject it.

4.3 Handling packet loss and reordering

Upon packet reordering or loss, the receiver may not be able to

authenticate a packet because the previous packet/hash is missing.

P4Sync detects such cases by checking the <epoch, seq> pair, and

use an advanced version of EMSS [41] to mitigate this problem.

Specifically, P4Sync uses EMSS to construct multiple hash chains,

where it attaches a packet with multiple hash values to build skip

list like data structure. As Figure 2(a) shows, the sender computes

h(i1) = h(P ,h(i − 20)), h(i2) = h(P ,h(i − 21)), ..., h(in) = h(P ,h(i −

2n)), where h(i − 2k) is the hash value of the 2k -th packet before

the current one. The receiver only needs to rely on one hash value

to authenticate a received packet, and authentication only fails if

all dependent hash chains are missing, which is unlikely.

To support this, the receiver uses an auxiliary register array of

size smax to maintain hash values of all previous packets. P4Sync

Secure State Migration in the Data Plane SPIN ’20, August 14, 2020, Virtual Event, NY, USA

if reg[this_seq–2^4]!=0:
auth_with(this_seq–2^4);

else if reg[this_seq–2^3]!=0:
auth_with(this_seq–2^3);

…
else if reg[this_seq–2^0]!=0:

auth_with(this_seq–2^0);
else

fail();

(c) P4 snippet

117 116 115 114 113 109 101

… …

(a) Multiple hash chains

Current

packet

Lost

packet

1151141131090 …… …

1151141130 …… … 116

117

(b) Read and update the register array

Authenticating 117 when 101 is lost but 109 has

been received

116

Authenticating 117 when 101 and 109 haven’t
been received

117

0

Figure 2: Data structures and program snippets for handling packet loss and reordering.

initializes all values in the register array to zero, and stores the

hash values of authenticated packets in the positions indexed by

their sequence numbers. Figures 2(b) and (c) show the process of

authenticating a newly arrived packet. The packet carries multiple

hash values that rely on different packets, ordered from the most

recent to the least recent. P4Sync first tries to authenticate the

current packet with the hash value that relies on the least recent

packet, in case more recent packets have not yet arrived due to

reordering. If the packet is authenticated successfully, P4Sync will

cache its hash value in the register array. If the hash value of the

previous packet is invalid (default: zero), which means the packet

has not been received yet, P4Sync will try to use the hash value of

the second least recent packet. For example, for packet 117, P4Sync

will first try to use the hash value of packet 101 to authenticate it. If

packet 101 has not been received, packet 117 is recirculated to index

this array one more time, attempting to use 109 for authentication.

In the worst-case scenario, none of the previous hash values have

been received. In this case, P4Sync stores the hash value in the

register array but marks it as unauthenticated. At the end of the

migration, P4Sync uses the packet generator to sweep through this

array end-to-end, and recompute hash chains for all such registers.

4.4 Discussions

Handling frequentmigration. In some cases, the state migration

happens very frequently. For instance, some systems [25, 29] may

generate migration packets at RTT timescales. Therefore, the sig-

nature operations may still be invoked quite frequently. To handle

this, we can perform further batching to use one signature per k

epochs. This would further amortize the public key cryptography

cost.

Handling denial of service. Our current design leaves denial-of-

service attacks out of scope. Such an attacker can drop or modify

migration packets so that the hash values are always rejected by

the receiver. To mitigate this, we could consider mimicry defenses

where migration traffic is hidden as normal user traffic. We plan to

explore this in future work.

5 INITIAL VALIDATION

Setup.We have built a prototype of P4Sync for initial validation,

which is written in P4 [5] for the migration logic and Python for

traffic generation. It runs in Mininet v2.2.2 with bmv2 model. We

adopt the same scenario with Swing State [37], where a source

switch migrates a hash table that tracks packet counts of each flow

in a network without packet loss and reordering. We also use Swing

State as the baseline for comparison. The hash table is implemented

using register arrays and uses CRC16 to calculate indexes with

flow 4-tuples. We test different hash table sizes from 210 to 216.

We use SipHash [9] to build a hash chain and use RSA to sign and

verify the last migration packet. SipHash [9] is a pseudorandom

function (PRF) that can be used to derive keyed hashes, or HMACs,

using a shared secret, and it can be implemented entirely in data

plane; we borrow this insight from a previous project, SPINE [14].

To provide non-repudiation, the RSA operations run in the switch

control plane. Our experiments mainly answer two questions: a)

How efficiently can P4Sync migrate state? b) How effectively can

P4Sync perform authentication?

Overhead.Wefirst evaluate themigration overhead for different

hash table sizes, by measuring the number of migration packets

needed to completely migrate the hash table. If the register array

size is n and a system uses N packets, we say that the overhead is

N /n. As shown in Figure 3, P4Sync has an overhead of 2x, because

it sweeps first through the main array and then the delta array. The

baseline has much higher overhead (7.4x-14.9x). This is because

user traffic produces random accesses to the register arrays, so it

takes a long time to achieve complete migration (Section 2.2).

To further understand the overhead of the baseline, we further

measure the completeness with different numbers of migration

packets for the hash table with 210 entries. As shown in Figure 4,

the baseline already achieves 99.22% completeness when using 5x

migration packets, but it uses another 3x to migrate the rest. This

is expected, because as more entries are migrated, the probability

that a normal data packet hits an entry that has not been migrated

decreases gradually. Actually, this can be modeled as a coupons

collector problem [3], and the expected number of packets needed

to migrate the entire hash table can be computed as n ×
∑n
1 1/i ,

where n is the register array size. Depending on the structure of the

state, an incomplete state copy may not be usable, e.g., if registers

depend on or refer to other registers that are missing.

In terms of memory overhead, we found that for a hash table of

size 216, the memory overhead for P4Sync is 128 kB for the delta

array. Since the network does not incur loss, the auxiliary registers

for buffering hash values are not needed. If they are added to the

program, they would incur a similar amount of overhead as the

delta array, as each of them has size smax . Overall, P4Sync incurs

O(100kB) memory, only a fraction of O(10MB) memory in modern

switches.

Authentication. To evaluate how effectively P4Sync performs

header authentication, we simulate an attacker who launches two

attacks: a) the attacker captures the migration packets and changes

the carried state; and b) the attacker masquerades as the source

SPIN ’20, August 14, 2020, Virtual Event, NY, USA Jiarong Xing, Ang Chen, and T.S. Eugene Ng

 0

 2

 4

 6

 8

 10

 12

 14

 16

210 211 212 213 214 215 216

O
ve

rh
e
a
d
 (

N
/n

)

Hash table size

Baseline

P4Sync

Figure 3: The overhead of completely migrating hash tables

of different sizes.

switch and sends spoofed migration packets to the destination.

We repeat both attacks for 100 times and we find that P4Sync can

always detect and report all attacks. The first attack is detected in

the data plane when authenticating hash values; the second attack

is detected by the control plane when verifying RSA signatures.

P4Sync provide non-repudiation guarantees by verifying the

RSA signature of the last migration packet of each migration epoch.

Wemeasure the latency of generating and verifying a RSA signature

in the control plane of a Wedge 100BF-32X Tofino switch, which

has an eight-core Intel CPU at 1.60GHz. We find that it takes 2.15ms

and 0.07ms on average to sign and verify a RSA-2048 signature.

Therefore, the delay for authentication is under 3ms overall. To

support more frequent migrations, P4Sync needs to be extended to

perform one signature per multiple epochs.

6 RELATED WORK

State migration. State migration has been studied in traditional

and SDN networks [20, 30, 36, 52]. For instance, VROOM migrates

virtual routers across physical routers while minimizing disruption

to user traffic. Swing State [37] and LOADER [51] sketch initial

approaches to data plane migration. P4Sync proposes a principled

migration protocol, and can provide authentication guarantees.

Crypto support in P4. A number of projects have considered

cryptographic support in P4 [1, 2, 14, 22, 23, 46]. The most related

work is SPINE [14], which uses SipHash [9] as a building block for

header encryption.

Stream authentication. P4Sync builds upon previous proposals

for amortizing signature cost [18, 40ś42, 45, 53]. We adapt one

of these protocolsÐEMSS [41]Ðfor the data plane, and addresses

several practical challenges, such as replay attacks, packet loss and

reordering, and P4 support.

7 SUMMARY AND FUTUREWORK

Wehave described P4Sync, a statemigration protocol that efficiently

transfers switch state in the data plane, while leveraging signature

amortization for authenticating the state and the sender. We hope

that P4Sync will promote more discussions in the community on a)

cryptographic support for data planes and b) state maintenance for

P4 networks. Going forward, we are working to develop a hardware

prototype and conduct a wider range of evaluations.

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

C
o
m

p
le

te
n
e
s
s
 (

%
)

Overhead (N/n)

Baseline

P4Sync

Figure 4: P4Sync has lower overhead and achieves complete-

ness.

8 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feedback;

we also thank Kuo-Feng Hsu, Qiao Kang, and Yiming Qiu for their

valuable comments on earlier drafts of this paper. This work was

partially supported by NSF grants CNS-1942219 and CNS-1801884.

REFERENCES
[1] Add crypto extern to behavioral-model. https://github.com/p4lang/behavioral-

model/pull/834.

[2] AES encryption P4 implementation. https://github.com/chenxiaoqino/p4-projec
ts/tree/master/AES.p4app.

[3] Coupon collector’s problem. https://en.wikipedia.org/wiki/Couponcollector%2
7sproblem.

[4] nplang. https://github.com/nplang.

[5] The P4 language repositories. https://github.com/p4lang.

[6] The P4Sync code repository. https://github.com/jiarong0907/P4Sync.

[7] Tofino: World’s fastest P4-programmable Ethernet switch ASICs. https://www.
barefootnetworks.com/products/brief-tofino/.

[8] Wedge 100bf-32x 100gbe data center switch. https://www.edge-core.com/produ
ctsInfo.php?cls=1&cls2=180&cls3=181&id=335.

[9] Jean-Philippe Aumasson and Daniel J Bernstein. SipHash: A fast short-input PRF.
In Proc. Indocrypt, 2012.

[10] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek
Mittal. Bamboozling certificate authorities with BGP. In Proc. USENIX Security,
2018.

[11] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN. ACM SIGCOMM
CCR, 43(4):99ś110, 2013.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and AndrewWarfield. Live migration of virtual machines.
In Proc. NSDI, 2005.

[13] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, et al. Andromeda: Performance, isolation, and velocity
at scale in cloud network virtualization. In Proc. NSDI, 2018.

[14] Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang. SPINE: Surveil-
lance protection in the network elements. In Proc. FOCI, 2019.

[15] Roberto Doriguzzi-Corin, Elio Salvadori, Matteo Gerola, and Michele Santuari.
An approach to exposing and sharing network services in software-defined
networking. In Proc. SOSR, 2015.

[16] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C
Mogul. Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags. In Proc. NSDI, 2014.

[17] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. OpenNF: Enabling innovation in
network function control. In Proc. SIGCOMM, 2014.

[18] Rosario Gennaro and Pankaj Rohatgi. How to sign digital streams. In Proc. Crypto,
1997.

[19] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper: Data plane
performance diagnosis of TCP. In Proc. SOSR, 2017.

Secure State Migration in the Data Plane SPIN ’20, August 14, 2020, Virtual Event, NY, USA

[20] Soudeh Ghorbani, Cole Schlesinger, Matthew Monaco, Eric Keller, Matthew
Caesar, Jennifer Rexford, and David Walker. Transparent, live migration of a
software-defined network. In Proc. SoCC, 2014.

[21] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. Drill: Micro load balancing for low-latency data center networks.
In Proc. SIGCOMM, 2017.

[22] Frederik Hauser, Marco Häberle, Mark Schmidt, andMichael Menth. P4-IPsec: Im-
plementation of IPsec gateways in P4 with SDN control for host-to-site scenarios.
arXiv preprint arXiv:1907.03593, 2019.

[23] Frederik Hauser, Mark Schmidt, Marco Häberle, and Michael Menth. P4-MACsec:
Dynamic topology monitoring and data layer protection with MACsec in P4-SDN.
2019. arXiv preprint arXiv:1904.07088.

[24] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. Blink: Fast connectivity recovery
entirely in the data plane. In Proc. NSDI, 2019.

[25] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen Tammana,
and David Walker. Contra: A programmable system for performance-aware
routing. In Proc. NSDI, 2020.

[26] Ali Al Imem. Comparison and evaluation of digital signature schemes employed
in ndn network. arXiv preprint arXiv:1508.00184, 2015.

[27] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. The Crossfire attack. In Proc.
S&P, 2013.

[28] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo.
Programmable in-network security for context-aware BYOD policies. In Proc.
USENIX Security, 2020.

[29] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. Hula: Scalable load balancing using programmable data planes. In Proc.
SOSR, 2016.

[30] Eric Keller, Jennifer Rexford, and Jacobus E van der Merwe. Seamless BGP
migration with router grafting. In Proc. NSDI, 2010.

[31] Ricardo Koller, Leonardo Marmol, Raju Rangaswami, Swaminathan Sundarara-
man, Nisha Talagala, and Ming Zhao. Write policies for host-side flash caches.
In Proc. FAST, 2013.

[32] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and Ryan Stutsman.
Rocksteady: Fast migration for low-latency in-memory storage. In Proc. SOSP,
2017.

[33] Taeho Lee, Christos Pappas, Adrian Perrig, Virgil Gligor, and Yih-Chun Hu. The
case for in-network replay suppression. In Proc. Asia CCS, 2017.

[34] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration of
virtual machine based on full system trace and replay. In Proc. HPDC, 2009.

[35] Yujie Liu, Yong Li, Marco Canini, YueWang, and Jian Yuan. Scheduling multi-flow
network updates in software-defined NFV systems. In Proc. INFOCOMWorkshops,
2016.

[36] Samantha Lo,Mostafa Ammar, and Ellen Zegura. Design and analysis of schedules
for virtual network migration. In Proc. IFIP Networking, 2013.

[37] Shouxi Luo, Hongfang Yu, and Laurent Vanbever. Swing State: Consistent updates
for stateful and programmable data planes. In Proc. SOSR, 2017.

[38] Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever, and Martin
Vechev. NetHide: Secure and practical network topology obfuscation. In Proc.
USENIX Security, 2018.

[39] RuiMiao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, andMinlan Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap using switching ASICs. In
Proc. SIGCOMM, 2017.

[40] Jung Min Park, Edwin KP Chong, and Howard Jay Siegel. Efficient multicast
packet authentication using signature amortization. In Proc. S&P, 2002.

[41] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar. Efficient authentication
and signing of multicast streams over lossy channels. In Proc. S&P, 2000.

[42] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar. Efficient and secure
source authentication for multicast. In Proc. NDSS, 2001.

[43] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. SIMPLE-fying middlebox policy enforcement using SDN. In Proc.
SIGCOMM, 2013.

[44] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. ACM SIGCOMM CCR, 42(4):323ś334, 2012.

[45] Pankaj Rohatgi. A compact and fast hybrid signature scheme for multicast packet
authentication. In Proc. CCS, 1999.

[46] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian Gallenmüller,
Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and Georg Carle. Crypto-
graphic hashing in P4 data planes. In Proc. ANCS, 2019.

[47] Aidan Shribman and Benoit Hudzia. Pre-copy and post-copy VM live migration
for memory intensive applications. In Proc. Euro-Par, 2012.

[48] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller, and Jonathan M Smith.
Scaling hardware accelerated network monitoring to concurrent and dynamic

queries with *flow. In Proc. USENIX ATC, 2018.

[49] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of SDN through
a future-proof forwarding plane. In Proc. HotSDN, 2013.

[50] Ahren Studer and Adrian Perrig. The Coremelt attack. In Proc. ESORICS, 2009.

[51] German Sviridov, Marco Bonola, Angelo Tulumello, Paolo Giaccone, Andrea
Bianco, and Giuseppe Bianchi. Local decisions on replicated states (LOADER) in
programmable data planes: programming abstraction and experimental evalua-
tion. arXiv preprint arXiv:2001.07670, 2020.

[52] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus Van Der Merwe, and Jennifer Rex-
ford. Virtual routers on themove: live routermigration as a network-management
primitive. ACM SIGCOMM CCR, 38(4):231ś242, 2008.

[53] Chung Kei Wong and Simon S Lam. Digital signatures for flows and multicasts.
In Proc. ICNP, 1998.

[54] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy, and Scott
Shenker. Elastic scaling of stateful network functions. In Proc. NSDI, 2018.

[55] Timothy Wood, Prashant J Shenoy, Arun Venkataramani, Mazin S Yousif, et al.
Black-box and gray-box strategies for virtual machine migration. In Proc. NSDI,
2007.

[56] Jiarong Xing, Qiao Kang, and Ang Chen. Netwarden: Mitigating network covert
channels while preserving performance. In Proc. USENIX Security, 2020.

[57] Jiarong Xing, Wenqing Wu, and Ang Chen. Architecting programmable data
plane defenses into the network with fastflex. In Proc. HotNets, 2019.

[58] Nofel Yaseen, John Sonchack, and Vincent Liu. Synchronized network snapshots.
In Proc. SIGCOMM, 2018.

[59] Tianlong Yu, Seyed Kaveh Fayaz, Michael P Collins, Vyas Sekar, and Srinivasan
Seshan. PSI: Precise security instrumentation for enterprise networks. In Proc.
NDSS, 2017.

[60] Yu Zhou, Zhaowei Xi, Dai Zhang, Yangyang Wang, Jinqiu Wang, Mingwei Xu,
and Jianping Wu. Hypertester: high-performance network testing driven by
programmable switches. In Proc. CoNEXT, 2019.

	Abstract
	1 Introduction
	2 The State Migration Problem
	2.1 Problem statement
	2.2 State of the art & Limitations

	3 The P4Sync Migration
	3.1 Roadmap
	3.2 Achieving migration completeness
	3.3 Minimizing migration overhead
	3.4 Controlling migration rate

	4 The P4Sync Authentication
	4.1 The threat model
	4.2 Efficient stream authentication
	4.3 Handling packet loss and reordering
	4.4 Discussions

	5 Initial Validation
	6 Related work
	7 Summary and Future Work
	8 Acknowledgments
	References

