
Occam: A Programming System for Reliable
Network Management

Jiarong Xing
Rice University

Kuo-Feng Hsu
Meta

Yiting Xia
Max Planck Institute for

Informatics

Yan Cai
Meta

Yanping Li
Meta

Ying Zhang
Meta

Ang Chen
University of Michigan

Abstract
The complexity of large networks makes their management
a daunting task. State-of-the-art network management tools
use workflow systems for automation, but they do not ade-
quately address the substantial challenges in operation relia-
bility. This paper presents Occam, a programming system
that simplifies the development of reliable network manage-
ment tasks. We leverage the fact that most modern network
management systems are backed with a source-of-truth data-
base, and thus customize database techniques to the context
of network management. Occam exposes an easy-to-use
programming model for network operators to express the
key management logic, while shielding them from reliability
concerns, such as operational conflicts and task atomicity. In-
stead, theOccam runtime provides these reliability guardrails
automatically. Our evaluation demonstrates Occam’s effec-
tiveness in simplifying management tasks, minimizing net-
work vulnerable time and assisting with failure recovery.

CCS Concepts: • Networks→ Network management;
Network reliability; Network manageability.

Keywords: Network management, Reliability
ACM Reference Format:
Jiarong Xing, Kuo-Feng Hsu, Yiting Xia, Yan Cai, Yanping Li, Ying
Zhang, and Ang Chen. 2024. Occam: A Programming System for
Reliable Network Management. In Nineteenth European Conference
on Computer Systems (EuroSys ’24), April 22–25, 2024, Athens, Greece.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3627
703.3650086

Xing and Hsu contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3650086

1 Introduction
Managing complex networks is challenging, particularly at
scale. A planet-scale cloud/content provider’s network can
contain devices from dozens of vendors, dozens of network
element roles, and tens of thousands of circuits in opera-
tion. Together, they contribute to thousands of configura-
tion changes every day [25]. Furthermore, network manage-
ment encompasses a wide range of tasks, including service
upgrades, device updates, network expansion, and feature
deployment. Each task requires a distinct workflow of oper-
ations. The combination of network scale and task diversity
introduces inherent risks, turning network management into
a complex and precarious procedure [20]. Thus, the network
management system plays an important role for reliability.

Researchers and practitioners have made concerted efforts
toward increasing the reliability of network management
tasks. In the past years, our community has moved away
from the use of “method of procedures” (MOPs)—loose text
documenting management steps and rules of thumb. Tra-
ditional MOPs can be easily misinterpreted by individual
operators and often require manual translation into scripts
or configlets [17]. Rather, recent systems like AT&T’s COR-
NET [28], Google’s ZTN (zero-touch networks) [25], and Al-
ibaba’s NetCraft [27] utilize workflow systems to streamline
management tasks and minimize manual efforts. A workflow
program is general-purpose code (e.g., in Python or Java)
written in a pipeline of stages. Each stage performs several
execution steps and passes intermediate results to the next,
and it can further invoke pre-defined sub-procedures called
“building blocks” (BBs) for common network operations (e.g.,
drain traffic). BBs may be implemented in any shape or form,
such as Ansible, Python, or CLI scripts, or even using pre-
compiled binaries. Thus, the resulting workflow systems
are akin to the UNIX Shell—powerful, general-purpose ad-
ministration tools—applicable to any automation tasks, but
without dedicated designs for network management.

While zero-touch automation is a laudable step forward,
reliable management goes beyond automation. Just like how
rogue Shell scripts may wipe an entire disk, a problematic
workflow program can exert arbitrary influence to the net-
work. Network management requires end-to-end coordina-
tion of myriad services (e.g., querying the source-of-truth

https://doi.org/10.1145/3627703.3650086
https://doi.org/10.1145/3627703.3650086
https://doi.org/10.1145/3627703.3650086

EuroSys ’24, April 22–25, 2024, Athens, Greece Xing and Hsu, et al.

database [29, 39]) and devices (e.g., switch firmware updates),
so reliability goals are essential:
• Consistency. Amanagement taskmay require changes
to multiple configurations on a device or across de-
vices, often in a specific order. A workflow system
should guarantee that changes are made in a consis-
tent manner, resulting in correct network states.
• Efficiency. In many cases, it is desirable for changes
to be deployed as quickly as possible, so as to mitigate
failures, balance traffic, or roll out a security patch.
Thus, scheduling and executing workflows efficiently
to minimize network vulnerable time is important.
• Resilience. Workflows may fail for various reasons,
e.g., wrong device states, conflicts with other work-
flows, failure of manual steps (such as maintenance
in the field). Partially-executed workflows should be
undone using rollback logic, and this is often not just
a simple reversal of the original management steps.

Occam addresses these problems by developing a program-
ming system that provides reliability guardrails for network
management tasks. Our key observation is that network
management tasks essentially evolve the logical network state
from snapshot to snapshot, and then modify the physical de-
vices based on the logical state. Further, production networks
often store the logical network state in a source-of-truth
database, such as at Facebook/Meta’s Robotron [39] and
Google’s Malt [29]. Network management tasks, therefore,
can be viewed as transactions atop a logical network data-
base, with corresponding physical effects on the network
devices. Thus, we can abstract the network management
workflows as changes to the network state and apply vari-
ous database techniques for reliable operations.

Occam exposes a uniform and constrained programming
model using a network object abstraction as well as a set of
APIs that manipulates the objects. An Occam program con-
structs network objects by scoping a range of devices and
performs device operations through the APIs. The program-
ming model shields complexities that arise from having to
reason about reliability goals in a manual and task-specific
manner, so that network operators can author concise and
easy-to-use management tasks. Based on the network ob-
jects, the runtime system automatically generates queries to
the source-of-truth database, enforces constraints on the net-
work, monitors task progress, and suggests failure rollback
plans. For consistency, Occam builds an object tree from net-
work objects based on their dependencies and applies multi-
granularity locking to enable workflow-level transactions.
For efficiency, Occam performs hierarchical lock scheduling
on the object tree to maximize task parallelism and minimize
execution time. For resilience, Occam identifies limitations
of reverse-order rollbacks and generates rollback plans by
pattern matching based on the semantics of management
operations. Our contributions include:

• An analysis of an industry dataset obtained from Meta,
a major cloud/content provider, to understand the cur-
rent practice and to motivate the Occam design (§2).
• A novel programming abstraction (§3)—a logically cen-
tralized network object—that simplifies the manage-
ment tasks by shielding peripheral reliability concerns.
• A runtime system that ensures state consistency and
atomicity (§4), schedules for execution efficiency (§5),
and assists runtime failure and recovery (§6).
• A prototype (§7) and its evaluation (§8) to demonstrate
its effectiveness for network management: the pro-
gramming model reduces LoC of workflow programs
by over 90%; locking and scheduling reduces task exe-
cution time by 4-10×; and Occam generates effective
rollback plans to assist with recovery.
• Network management is a problem space that is today
primarily worked on by industry. We contribute our
prototype as evaluation tools for future research [42].

2 Insights from a Production Network
Conventional wisdom in network management circulates
within industry operation teams. Although several aspects
of the current practice have been published (e.g., data model-
ing [29, 39], automation [25, 27, 28], state management [38]),
system support for network management remains largely
opaque to the academic community. To gain insights into
today’s industry practice, we have engaged with Meta, a ma-
jor online service provider that operates networks at scale.
We were given anonymized datasets collected from their cur-
rent management system over several months, supplemented
with numerous interviews with their operation teams to un-
derstand the current practices. This section contributes a
detailed analysis of today’s industry practices. Occam builds
upon the insights drawn from large network operations, but
rethinks the design requirements for a clean-state architec-
ture from an academic perspective.

2.1 Network management practices
The practice of relying on “method of procedures” (MOPs) [11,
12] was prevalent (in Meta and elsewhere) until very recently.
MOPs are collections of documents written in natural lan-
guages that specify step-by-step procedures for management
tasks—e.g., steps to drain traffic from a network. MOPs spec-
ify in a loose manner actions to be taken and network con-
ditions to monitor. It is then up to the network operator to
carry out the operation, e.g., either manually or by translat-
ing the MOPs into scripts or configlets. Ambiguity in natural
languages and loose documentation make this a challeng-
ing task. Even across operation teams in the same company,
scripts and configlets may be written in different languages
without a uniform execution platform. Idiosyncratic cod-
ing practices introduce further obscurity. This disarray has
motivated their recent transition to “workflow” automation.

Occam: A Programming System for Reliable Network Management EuroSys ’24, April 22–25, 2024, Athens, Greece

 0
 4
 8

 12
 16

 0 5 10 15 20

Ex
ec

ut
io

ns
 (K

)

Workflow id

(a) Workflow frequency.

 0
 25
 50
 75

 100

0.01 1 100

W
F

C
D

F
(%

)

Hours

(b) Execution duration.

 0
 25
 50
 75

 100

 0 20 40 60 80

W
F

C
D

F
(%

)

BB count

(c) Per-workflow BB counts.

 0
 100
 200
 300

 0 10 20 30 40

BB
s

Reuse count

(d) Number of shared BBs.

 0
 50

 100
 150
 200
 250

 0 20 40 60 80
Ta

sk
 p

ai
rs

Time (day)

(e) Overlapping workflows

100

102

104

 0 20 40 60 80 100

D
ev

ic
es

Workflow id

(f) # devices per workflow

Figure 1. Statistics from Meta.

The Meta workflow system exhibits marked similarity to a
recently-published project, AT&T’s CORNET [28]. For both
Meta and AT&T, the workflow systems are general-purpose
automation frameworks, akin to Apache Airflow [18]. A
more powerful analogue to Shell, they are administrative
tools that orchestrate smaller building blocks (BBs) to per-
form larger tasks. In CORNET, BBs are scripts and configlets
(e.g., Ansible, Python, or CLI code) to perform a specific net-
work management step. In fact, any executable format would
suffice, since the workflow system simply invokes them as a
blackbox—just like how Shell strings together multiple arbi-
trary binaries in a script. A CORNET workflow is a pipeline
of stages, where each stage embeds one or more BBs.
Occam’s system has slightly more uniformity in that it

is a purely Python-based platform, with the same language
used for the main management programs and the individual
BBs. This helps code reuse, maintenance, and understand-
ing. However, the same workflow system is also in charge of
many other tasks that are far removed from networkmanage-
ment. Cloud storage backup, service repair, data encryption,
and many such generic maintenance tasks use the work-
flow platform. Network management tasks, despite their
domain-specific nature, are treated as just another automa-
tion workload. In other words, the underlying system is a
legacy, general-purpose design with little customization for
network management. Transitioning management tasks to
this platform is, unfortunately, more of an afterthought.

2.2 Workflow characterization
Atop the workflow system, network management tasks are
highly (but not completely) automated. Notable examples
that require manual intervention are tasks that require phys-
ical setup (e.g., network expansion) or failure recovery (e.g.,
recovering crashed devices or services).

Our dataset identifies 234 workflow programs for network
management, among which 118 (∼50%) have been executed
at least once in the measured duration. Moreover, there is
a heavy-tail distribution for their execution frequency, as
shown in Figure 1a. (The figure omits the long tail after
the top-20 workflows for clarity of presentation.) The most
frequently executed workflow ran more than 15,000 times
over the month (or every three minutes on average), and
about ten workflows executed more than 1000 times (or 1.4
times per hour). We found that these workflows are usually
monitoring tasks, which oversee the network health and
gather the latest device and network state.

Figure 1b further plots the task execution time for all work-
flow runs. Roughly over half of the executions lasted formore
than one hour, and about 20% for more than 100 hours. The
execution time is bottlenecked by two main factors: a) some
workflows reserve entire network regions (e.g., datacenters)
exclusively, just to be cautious about potential impacts; and
b) device-level operations on the physical network usually
take a long time (e.g., firmware updates).

However, across all workflows and despite their variegated
goals, we observe a deep, common pattern in their logic.
Almost all workflows (1) query and/or modify network state
from “source-of-truth” databases, which maintain a logical
view of the network; (2) modify physical network devices
based on the logical view; and (3) invoke a library of BBs
as necessary (e.g., update firmware, create configuration).
Figure 1c further shows the number of BBs in workflows,
and Figure 1d illustrates the amount of reuse across BBs.

2.3 Reliability gaps
By analyzing the dataset and discussing with the operation
teams, we have identified several classes of issues that must
be handled for reliability. As another important observation

EuroSys ’24, April 22–25, 2024, Athens, Greece Xing and Hsu, et al.

that motivates Occam, these reliability concerns are often
peripheral to the key management logic.
1. Resolving network state conflicts. Production networks

maintain state in “source-of-truth” databases [29, 39], and
workflow programs must ensure that they operate on the up-
to-date view. Network databases provide query-level trans-
actions, but a management task may require several round
trips to the databases. Thus, when queries interleave with
each other across tasks, database-level transactions provide
no guarantee for task-level isolation. Consider a network
migration task that logically deletes a set of devices from
the database and later inserts replacement devices. It must
be carefully coded so that by default, the intermediate state
across database queries is not exposed to other tasks. Other-
wise, a traffic engineering taskmaymistakenly view logically
deleted devices as offline and thus trigger disruptive rerout-
ing, even though the physical devices are still serving traffic.
2. Resolving device operation conflicts. Another class of

complexity revolves around device-level operations on the
network devices. Even if two management tasks use log-
ically consistent network state, uncoordinated operations
through the physical devices can also give rise to conflicts
(e.g., race conditions that lead to management tasks overwrit-
ing each other’s updates). For instance, a task that performs
firmware upgrades and another one that performs configura-
tion changes cannot concurrently touch overlapping devices.
Figure 1e shows that 150-200 pairs of workflow instances
perform operations on overlapping devices every day. Fig-
ure 1f further shows that the number of devices used by a
workflow ranges from a few to tens of thousands. Today,
workflow programs must coordinate amongst themselves
when performing device-level operations to avoid conflicts.

3. Resolving cross-task conflicts. Tasks without any network
state or device-level conflicts may still violate subtle network-
wide invariants when they are taken together. For instance,
a PoP (point of presence) management task detects link flap-
ping at a PoP-backbone network link and decides to offload
the traffic to an alternative link. However, it is unaware that
another maintenance task is in progress and will soon bring
down the alternative link. The two tasks operate on non-
overlapping regions of the network, but their composition
would disconnect the entire PoP from the backbone.

4. Failure detection and handling. Another class of relia-
bility concern is failure handling. Runtime exceptions (e.g.,
device failures and service errors) are common in large net-
works. The database and device-level operations can fail for
various reasons, and it is up to the individual workflow pro-
grams to diagnose and handle these failures. Our statistics
show that the top-two reasons for workflow program fail-
ures are database query errors and failures (63%) and device
operation errors (17%); other types of miscellaneous failures
account for the rest of the problems (10%). Further, when
failures are detected, they are reported to the operator with
little assistance in suggesting a potential repair.

2.4 Motivation for Occam
Our key insight is that workflow programs have to simul-
taneously handle the “key management logic”, which cor-
responds to the central management goals (e.g., draining
devices and updating their firmware), but at the same time,
they need to defend against a wide range of reliability con-
cerns for correctness (e.g., synchronizing across workflows
in ad-hoc manners to prevent simultaneous database and
device operations, and continuously monitoring network
health to detect and handle runtime failures). Instead of leav-
ing these tasks to individual workflows, without any built-in
guarantees, we believe that a principled design should sup-
port reliability at the workflow framework level natively.
To this end, we design Occam to tackle the workflow re-

liability problem. Occam exposes a set of unified, narrow
programming APIs for operators to program the key man-
agement logic. The Occam runtime addresses the reliability
requirements with three components: (1) a locking mecha-
nism to ensure consistency; (2) a scheduling algorithm to
improve efficiency; and (3) a failure recovery layer to assist
operators in handling failed tasks by suggesting concrete roll-
back steps. Occam management tasks are written in Python,
following best practices observed in Meta. Network opera-
tors may not be trained as programmers, so a popular and
easy-to-use language like Python improves usability. This
also allows us to port certain management tasks from Meta’s
platform to Occam for evaluation. However, the Occam de-
sign principles are general and not restricted to the choice
of implementation languages. These designs borrow inspi-
rations from various database techniques, but the distinct
nature of network management requires new considerations.

3 The Occam Programming Model
An Occam program creates one or more network objects
by scoping the network regions of interest. All subsequent
operations either mutate the object state via a narrow API
(embedded in Python) or perform stateless computation lo-
cally. The stateful API represents the only channel via which
Occam tasks exert an influence on the physical or logical net-
work. The Occam runtime operates over this model, which
maintains a hierarchy of network objects, enabling analysis
of dependencies, locking conditions, task scheduling, and
rollback plan suggestion. Figure 2 shows the API and the
main components of Occam.

3.1 Data model: Network objects
Occam programs operate on a uniform data model—network
objects. An object instance encapsulates all needed network
states, and it is the only channel for management programs
to modify the network. Thus, the impact of an Occam task
is analyzable via its interaction with the object instances.
Across tasks, Occam also analyzes how the instantiated net-
work objects are used by the programs, for conflict detection

Occam: A Programming System for Reliable Network Management EuroSys ’24, April 22–25, 2024, Athens, Greece

(a) Stateful API on network objects (b) The Occam runtime system enforces a range of correctness properties

Occam system runtimeOccam tasks

Network object tree

Occam

...

Occam

net(.*)

dc1.*wan7.*

pod4.*

Physical networks

Failure detection and recovery

Network DB rollback

Device-level “undo”
failures

API Description
network(regex) Create and scope a network object
network.get([attr_key]) Get device attribute with key
network.set([attr_key, val]) Set device attribute with key
network.apply(func) Execute func on physical device
network.close() Commit state changes

Scheduling and dependency tracking

object

task

lock relations

Figure 2. Occam API and an illustrated workflow of the Occam system.

and lock scheduling. Occam programs perform operations on
specific network regions as defined by their network objects.
To scope a network region, our design decision is to use

regular expressions (regexes) as defined over the network
topology identifiers—network(dc1.*) captures the region
of datacenter dc1. This is driven by the observation that
datacenter networks are organized in a hierarchical struc-
ture (e.g., multi-tier trees), and network devices are usually
named and addressed from a well-defined identifier space
for manageability. These properties make regexes an ideal
fit for scoping the network region, compared to alternative
methods such as using a flat dictionary of device names. A
regex-based approach fits Meta’s network organization and
should be generalizable to other network providers. In rare
cases where device names are not chosen in a consistent
manner, device renaming may be required to use a regex ap-
proach. Moreover, we note that a network region as defined
by a regex is a symbolic representation: network(dc1.*)
represents all devices in dc1, including existing devices and
those that are being added by some ongoing management
task. This also enables a powerful locking approach at the
region level (§4).

Hence, a network object encapsulates a set of devices that
are connected via a set of links, forming a topology. Devices
have attributes (e.g., IP addresses, link interface speeds), and
links are represented by a class of attributes of their end-
point devices. When creating an object, Occam relies on the
user-provided regex to query the network database, and con-
structs the object state for subsequent management steps.
Thus, individual Occam programs always have easy and prin-
cipled access to the network database without having to han-
dle database-level issues (e.g., SQL query processing). Thus,
Occam shields operators from SQL-level concerns, such as
directly interfacing with network databases, detecting and
resolving database-level errors (recall from §2.3 that they ac-
count for 63% errors in the Meta dataset), and implementing
task-level transactions that span across SQL queries.

A network object represents the smallest “unit of concern”
for network management. It exposes a set of stateful APIs,
as defined in Figure 2a, via which Occam programs can ex-
ert an influence over the network. At a high level, they can

issue read/write requests on the logical network state as
queried from the database (e.g., set the DEV_STATE attribute
to UNDER_MAINTENANCE), and they can execute commands
on the physical devices (e.g., run upgrade_data_plane to
change the switch firmware). Scheduling, locking, and fault
tolerance guarantees are first enforced at a per-object level,
then extended to an entire Occam task, and then across Oc-
cam tasks that have dependency relations with each other.
Network objects in the same Occam tasks belong to the same
transaction, and their operations commit or fail as a whole.
Across tasks, dependencies may exist if they operate on over-
lapping sets of network objects. These reliability concerns,
however, are shielded from the programmer; instead, the Oc-
cam runtime system arbitrates access to the network objects
to achieve reliable network management.

3.2 Programming Occam tasks
An Occam program performs stateless, local computation
unless it explicitly invokes the stateful API to make the effect
visible to the network, including get(), set(), and apply().
Each stateful operation logically operates on all devices in
the network object. For instance, a set(dev_attr) call will
modify a set of devices and their attributes without program-
mers having to manipulate each device individually (e.g.,
issue separate operations for each device and synchronize
them). This results in cleaner code and also encourages the
programmer to think at clearer steps. In practice, the re-
alization of a stateful operation may be different on each
device—e.g., the input argument dev_attr is a dictionary
type that can be keyed on device identifiers, which sets dis-
tinct attribute values (e.g., IP addresses) for each device. For
instance, in Meta, management platforms rely on infrastruc-
ture services to interact with physical devices. Management
code eventually invokes other services that expose API for
manipulating each network device in a vendor-specific man-
ner. Occam adopts the same design, wheremanagement tasks
use a higher-level API but eventually, the operations will be
performed on physical devices via vendor-specific services.
The get() operation returns a dictionary of device at-

tributes for each device in the network object. As discussed,
dictionary keys are the device IDs in the regex identifier

EuroSys ’24, April 22–25, 2024, Athens, Greece Xing and Hsu, et al.

space, and the attributes themselves are dictionary types,
too. An attribute contains attribute names (e.g., IP address,
device state) and values—both queried from the network
database. The set() operation modifies device attributes
(e.g., assign IP addresses for each device). The apply() oper-
ation, on the other hand, executes a “device function” func,
which is a management operation that is executed on the
physical network devices. The func library is largely fixed
and only expands slowly over time, as it contains the basic
device-level commands that are usually reused across tasks
(e.g., performing firmware upgrades, device SSL key mainte-
nance). In this sense, this library serves a similar purpose as
the Building Blocks (BBs) in existing systems [28].

3.3 Occam by examples
To further showcase how operators use Occam, we now
include Occam programs for a set of management tasks.

Ex: Device maintenance for a pod. As a concrete exam-
ple, consider a simplified Occam program that flags specific
switches in a pod as under maintenance.

1 # device_maintenance.occam

2 dc1pod3 = Network("dc1.pod3.*")

3 dc1pod3.set("DEVICE_STATUS", "UNDER_MAINTENANCE")

4 dc1pod3.apply(f_push)

5 dc1pod3.close()

All four steps belong to the same transaction, and Line 5 is
the serialization point where the transaction commits. The
programmer only needs to understand the conventions for
device attributes (e.g., DEVICE_STATUS) and gain familiarity
with the set of device functions (e.g., f_push, f_drain); this
is the same as with any other network management system.
The runtime system maintains a log that tracks the progress
of each API operation and whether or not it succeeds. For
instance, Lines 2-3 may experience SQL connection failures
or incur an exception due to an invalid regex; Line 4 may also
fail if the device management interface cannot be reached
or if the drain command didn’t successfully execute. Upon a
failure, Occam assists the operator by suggesting a concrete
rollback plan both for the database and device state.

Ex: Dynamic object creation. The next program obtains
link status of each device, and dynamically creates a network
object (Line 8) that only contains devices whose links are not
yet turned up. It then turns up all links for this new object.

1 # turnup_links_subnet.occam

2 net = Network(args)

3 link_status = net.get("LINK_STATUS")

4 dev_names = []

5 for l, s in link_status.items():

6 if s != "UP":

7 dev_names += [l.a_end , l.z_end]

8 subnet = Network(to_regex(dev_names))

9 subnet.set("LINK_STATUS", "UP")

10 subnet.apply(f_push)

11 net.close()

12 subnet.close()

Ex: Link turn-up. We include the complete Occam code
in our code release [42] for link turn-up, which is ported from

the original workflow program obtained fromMeta. We have
further tested in the Meta environment and ensured that the
Occam task correctly performs the same functionality.

4 Multi-Granularity Locking
Next, we describe how Occam executes management tasks
and ensures consistency through multi-granularity locking.

4.1 Occam tasks
An Occam task is an instance of an Occam program, exe-
cuted with a specific network input. Each task exists in one
of the four states: a) submitted, where the task is enqueued
but has not been selected to run; b) active, where the task
has already made some progress but has not finished; c)
completed, where the the task has successfully finished and
committed all its changes; and d) aborted, if the task has en-
countered runtime failures and cannot succeed. Normally, a
task eventually transitions through the first three states, and
successfully modifies database and physical device states.
Upon task failures, Occam also suggests step-by-step recov-
ery plans to assist the operators (§6).

4.2 Object/Task dependency graph
The key data structure in task tracking is an object/task depen-
dency graph, which captures active network objects, active
tasks, and how they relate to each other. Figure 3 shows
an example. Object nodes are organized in a tree structure,
which we call a network object tree; we show a concrete
example in Figure 3b. This tree maintains a hierarchy of net-
work regions in which management operations are ongoing
or planned. Object/object edges are directional and indicate
containment relations—e.g., a node dc1.* would be the par-
ent of dc1.pod3.*. This hierarchical organization facilitates
efficient contention detection across network regions and
also helps reason about changing the granularity of locks as
suited for each network region.
Task nodes are not part of this tree, but they have direc-

tional edges pointing from and to certain objects in the tree
(Figure 3c). Task/object edges indicate lock requests and
acquisitions—an edge from an object to a task indicates that
the task currently holds a lock on the object, and the reverse
direction indicates that the task is currently waiting for a
lock on the object. The edges are further annotated with
lock types: S for shared locks, X for exclusive locks. Tasks do
not have direct edges to each other, but they are indirectly
dependent upon each other via their locks on the objects.
Taken together, the object/task dependency graph represents
all active management tasks and their network regions. This
dependency graph is gradually built as new tasks arrive.

4.3 Network object tree operations
The network object tree contains all active objects from all
tasks, and it upholds two invariants in its construction: a)

Occam: A Programming System for Reliable Network Management EuroSys ’24, April 22–25, 2024, Athens, Greece

(a) Dependency graph and
object tree full view

(c) Dependency graph view(b) Network object tree view (d) Insertion of a network object

.*

dc1.*
dc2.pod3.tor[1-2]

dc1.pod1.*

dc1.pod2.agg1dc1.pod3.tor[1-2]

dc1.pod1.tor.*

dc1.*

dc1.pod1.*

dc1.pod3.tor[1-2]

IX IS IX

IS

X

S X

dc2.pod3.tor[1-2]

o2

o1

o3

o4 o5 o6

o7

o2

o1

o3

o4 o5 o6

o7

o4

o2

Add o8

o81

o82

dc1.pod(1.tor[1-2]
|2.agg[1-3])

dc1.pod1.tor[1-2]

dc1.pod2.agg[1-3]

t1

t2 t3 t4

t5

t1 is waiting for the lock on o1
The lock on o1 has been granted to t1 Object Task t1

o1 o1 contains o2 o1 o2t1 o1

o1

o2 o3

o4 o5

o7 o6

o3

o5

Figure 3. Network object tree and object/task dependency graph.

a parent object strictly contains all its children in terms of
their network scope (e.g., dc1.* contains dc1.pod3.*), and
b) siblings of the same parent do not have any overlap (e.g.,
dc1.pod3.* may have a sibling node dc1.pod2.*). This de-
sign enables Occam to efficiently navigate this tree to identify
active network regions. Figure 3b shows a concrete example,
and Figure 4 shows the maintenance algorithm, which is
further described below for each operation.
Insert. Leveraging the containment relation maintained

by this tree, the Insert algorithm locates a position in the
hierarchy to insert a newly created object 𝑜𝑏 𝑗 . The algo-
rithm performs a recursive descent from the virtual root .*,
precisely following a unique path of containment relation,
ensuring that 𝑜𝑏 𝑗 is always contained by all nodes in this
path. This descent stops at a node 𝑝 when 𝑜𝑏 𝑗 is no longer
strictly contained by any of 𝑝’s children.
Split. The split between two overlapping objects 𝑜1 (i.e.,

the new node 𝑜𝑏 𝑗) and 𝑜2 (i.e., the existing node 𝑐) first iden-
tifies their intersection 𝑜 , and then inserts 𝑜 to the existing
subtree rooted at 𝑜2. After the split, the new object is updated
to 𝑜 ′1 = 𝑜1 \ 𝑜 (Line 12), and further compared against other
children in this hierarchy. The analysis of overlaps and splits
is based upon efficient regex operations, which are guar-
anteed to produce valid regexes as outputs [10]. Figure 3d
demonstrates a concrete example.
Delete. The Delete algorithm is performed in the back-

ground, and Occam uses reference counting on each active
network object. Every time a task finishes, its objects will be
checked by Occam to see whether they are ready for deletion.
An object will only be deleted from the tree when the last
task that uses it finishes (i.e., commits or aborts). The delete
operation itself is simple—removing a node from the tree
and grafting its children to the deleted node’s parent.

4.4 Multi-granularity locking
Next, we describe how Occam constructs the object/task
dependency graph on top of the network object tree. The
hierarchical nature of this dependency graph enables amulti-
granularity locking scheme which, in the database transac-
tion context, is known to provide good performance due

1: function InitObjTree
2: objtree.root← regex(".*")
3: objtree.root.lock← NULL
4: function Insert(root, obj) //Entry: root = objtree.root
5: for c ∈ GetChildren(root) do
6: if Contains(c, obj) then //Recursive descent
7: isLeaf(c)?AddChild(c,obj):Insert(c,obj);return
8: else if Contains(obj, c) then
9: AddChild(obj, c)
10: else if Overlapping(obj, c) then
11: Split(obj, c, root)
12: obj← obj \ c
13: if isNotEmpty(obj) then // remaining portions after splits
14: AddChild(root, obj)
15: function Split(o1, o2, r) //o1: new obj, o2: existing obj
16: o← Intersects(o1, o2)//Regex intersection
17: Insert(o2, o) //Insert intersection into the existing child
18: function Delete(obj)
19: parent← GetParent(obj)
20: for c ∈ GetChildren(c, obj) do
21: AddChild(parent, c)

Figure 4. The algorithm for maintaining the object tree.

to precise locking as needed [21]. More concretely, finer-
grained locking (e.g., per data item) enables more parallelism
opportunities, as locks are acquired and released as soon as
per-item operations finish; but this produces many locks and
higher overheads; coarser-grained locking is just the oppo-
site. Ideally, the granularity of locks should be adjustable and
chosen to be sufficiently large but not overly so. In Occam,
the object-level locking achieves this effect, as the object
scope naturally varies based on the network regions—thus,
we never lock more or less than what is necessary for each
Occam task. An object/task dependency edge could be a lock-
ing edge, which points from an object to a task, indicating
that a task has earned privileges to operate on the object. It
could also be an intentional edge [21], which points from a
task to an object, indicating a lock request that is yet to be
fulfilled. Both edges could indicate the mode of access—i.e.,
S/X for locking edges, and IS/IX for intentional edges.

EuroSys ’24, April 22–25, 2024, Athens, Greece Xing and Hsu, et al.

Task arrival.When a new task is submitted, Occam in-
serts network objects as the task executes, and then adds
the task as well as its dependency edges. For an 𝑜𝑏 𝑗 , Occam
adds exactly one dependency edge from 𝑛𝑒𝑤_𝑡𝑎𝑠𝑘 , which
represents an intentional lock. If the Occam program only
uses get() operations on 𝑜𝑏 𝑗 , the dependency edge is of the
type IS (intentional shared). If the program involves set()
or apply(), IX (intentional exclusive) will be added. Oc-
cam then triggers a Sched operation at the scheduler, which
analyzes the object- and task-level dependency across the
network to determine whether or not a lock request can be
fulfilled (more details in the next section).
Task execution and completion.When a network ob-

ject has finished its operations, the task has made forward
progress by one object, and will insert the next network ob-
ject if it exists. Eventually, Occam modifies the object/task
dependency graph when a task successfully completes its
operations on all objects. The algorithm iterates through all
objects that are locked by this task, and removes the locking
edges to release the locks. If a released object has no further
IX/IS edges (lock requests) or S edges (shared locks), this
means the object can be safely deleted from the object tree.
However, if the released object still has intentional locks,
it is then again up to the scheduler to decide which task it
should be granted to, so a Sched() operation is triggered.

5 Contention-Aware Scheduling
We now describe the Sched operation, which improves man-
agement efficiency and thus reduces the vulnerable time
using a lock scheduling algorithm. At the task level, Occam
uses strict 2PL [9], which gradually acquires locks as they
become available, but only releases them together when the
task commits. The majority of database designs use FIFO or-
der to schedule locks across transactions—i.e., available locks
are given to the earliest-arrival task—and recent work has
also considered contention-aware scheduling in the LDSF
(largest dependency set first) policy [40]. Occam supports
both policies, and it adapts LDSF to our setting based on
the unique structure of the object/task dependency graph.
LDSF uses two insights to facilitate faster overall progress.
First, across all objects (i.e., database items), the contention
levels vary (i.e., the number of tasks/transactions requesting
for and blocked on a particular object), and likewise certain
tasks may be blocking more tasks than others (e.g., they may
hold some high-contention objects). Second, when an object
becomes available, granting an exclusive lock to this object
is an expensive operation, as it only allows one task to make
progress; granting a shared lock on this object, in contrast,
may simultaneously enable multiple tasks to make progress.
Adapting the first insight in LDSF to our setting yields

three types of dependency analyses. (i) Direct dependencies:
A task 𝑡1 depends on another task 𝑡2 if 𝑡1 has an IS/IX lock
on an object 𝑜 , but 𝑡2 currently holds an S/X lock on the

1: function Sched(objtree, task_list)
2: for obj ∈ objtree, obj is unlocked do
3: // Get runnable read/write tasks
4: wait_wt_tasks, wait_rd_tasks← GetWaitTask(obj)
5: if objtree.policy == FIFO then
6: sched_task← FIFO(wait_wt_tasks, wait_rd_tasks)
7: else if objtree.policy == LDSF then
8: for t ∈ task_list do // Update task dependency set
9: t.depset← FindDepSet(t)
10: sched_task← LDSF(wait_wt_tasks, wait_rd_tasks)
11: if sched_task.type == read then
12: GrantSLock(wait_rd_tasks) // Run all read tasks
13: else
14: GrantXLock(sched_task)
15: function GetWaitTask(obj)
16: wait_wt_tasks← ∅; wait_rd_tasks← ∅
17: for o ∈ Containment(obj) do
18: for rd_task ∈ ISLockSet(o), rd_task is ready to run do
19: wait_rd_tasks← wait_rd_tasks ∪ {rd_task}
20: for wt_task ∈ IXLockSet(o), wt_task is ready to run do
21: wait_wt_tasks← wait_wt_tasks ∪ {wt_task}
22: return wait_wt_tasks, wait_rd_tasks
23: function FIFO(wait_wt_tasks, wait_rd_tasks)
24: wait_tasks = wait_wt_tasks ∪ wait_rd_tasks
25: //Choose the one with earliest arrival time
26: earliest_task← argmin𝑡 ∈𝑤𝑎𝑖𝑡_𝑡𝑎𝑠𝑘𝑠 t.arr_time
27: return earliest_task
28: function LDSF(wait_wt_tasks, wait_rd_tasks)
29: //Use a fake task to aggregate depset for all read tasks
30: urd_task← NewTask(); urd_task.depset← ∅
31: for rd_task ∈ wait_rd_tasks do
32: urd_task.depset← urd_task.depset ∪ rd_task.depset
33: //Choose the one with largest depset
34: wait_tasks = wait_wt_tasks ∪ {urd_task}
35: largest_task← argmax𝑡 ∈𝑤𝑎𝑖𝑡_𝑡𝑎𝑠𝑘𝑠 |t.depset|
36: return largest_task
37: function FindDepSet(task)
38: result← {task}
39: for obj ∈ task.granted_objs do
40: for o ∈ Containment(obj) do
41: for t ∈ IXLockSet(o) ∪ ISLockSet(o) do
42: result← result ∪ FindDepSet(t)
43: return result

Figure 5. The algorithm for hierarchical lock scheduling.

same object. (ii) Transitive dependencies: Transitively, if 𝑡1
reaches 𝑡2 over a sequence of object/task dependencies (e.g.,
𝑡1 waits for some object held by 𝑡 , which in turn waits for 𝑡2’s
objects), this reachability, denoted as 𝑡1 ⇝ 𝑡2, also represents
dependency across tasks. (iii) Containment relations: Last but
not least, Occam analyzes dependencies that arise due to the
hierarchical nature of network objects. A task that holds an
S/X lock on some object 𝑜 also blocks all tasks that have an
IS/IX lock on 𝑜 ′, if they have containment relations with
each other, either 𝑜 ⊂ 𝑜 ′ or 𝑜 ′ ⊂ 𝑜 . Lines 37-43 in Figure 5
describe how we compute the dependency set for a task. As

Occam: A Programming System for Reliable Network Management EuroSys ’24, April 22–25, 2024, Athens, Greece

Normal Pattern Rollback plan Failure Pattern Rollback plan

(P1) seq ::= seq step r(step)→r(seq) (P6) b_seq ::= seq b_step r(b_step)→r(seq)
| step r(step) | b_step r(b_step)

(P2) step ::= cfg_change r(cf_change) (P7) b_step ::= b_cfg_change r(b_cfg_change)
| offline r(offline) | b_offline r(b_offline)
| testing r(testing) | b_testing r(b_testing)

(P3) cfg_change ::= db_list PUSH_CFG r(db_list)→PUSH_CFG (P8) b_cfg_change ::= db_list r(db_list)
db_list ::= db_list DB_CHANGE r(DB_CHANGE)→r(db_list)

| DB_CHANGE r(DB_CHANGE)

(P3) offline ::= DRAIN seq UNDRAIN DRAIN→r(seq)→UNDRAIN (P9) b_offline ::= DRAIN seq r(seq)→UNDRAIN
| DRAIN b_seq r(b_seq)→UNDRAIN
| DRAIN UNDRAIN

(P5) testing ::= PREPARE test_list UNPREPARE — (P10) b_testing ::= PREPARE test_list UNPREPARE
test_list ::= test_list TEST — | PREPARE UNPREPARE

| TEST —

Table 1. Log matching patterns and their reverse functions.

concrete examples in Figure 3c, (𝑡3, 𝑡1), (𝑡4, 𝑡1), (𝑡5, 𝑡4) are
direct dependencies, (𝑡5, 𝑡1) is a transitive dependency, and
(𝑡2, 𝑡1), (𝑡2, 𝑡3) are containment dependencies.
When picking a task to run, the scheduler not only con-

siders the tasks waiting for the current object, but also those
waiting for objects with containment relations with this ob-
ject. Lines 15-22 in Figure 5 describes the method to find
all such tasks. The GetWaitTask algorithm returns separate
lists for write and read tasks respectively, which will be the
input for the scheduling algorithm.

Regardless of the policy, at the end of each Sched invoca-
tion, Occam will grant S locks for all waiting read tasks if
the sched_task is read; otherwise, it only grants one X lock
for sched_task. The lock granting process simply flips the di-
rection of the edge in the object/task dependency graph—i.e.,
from IS/IX edges to S/X edges. Once a task has obtained a
network object that it is waiting for, it can proceed to issue
Occam operations on this object. Assuming that no failures
occur, then eventually all tasks successfully commit with
their modifications. It is known that in 2PL, deadlocks could
happen. Occam handles deadlocks by detecting and breaking
them via aborting and re-executing the task that causes a
deadlock. Occam also supports accommodating urgent tasks
like outage recovery by prioritizing their scheduling.

6 Assisting Failure Recovery
Upon failures, Occam suggests a sequence of undo operations
to the operator to roll back the effect of the management
task. As discussed in §2, failures are high-priority incidents,
so human operators must be involved to identify or roll out
repair plans. Nevertheless, Occam can assist this process by
suggesting a potential recovery plan.
In the simplest case, a sequence of steps 𝑠1, · · · , 𝑠𝑘 is un-

done by following the reverse order to undo each of the steps
𝑠−1
𝑘
, · · · , 𝑠−11 —assuming that each step 𝑠 is reversed by some

operation 𝑠−1 manually or with pre-specified configlets [27].
This is shown as pattern P1 in Table 1, which is a stateless
sequence of operations that can be rolled back with a linear
reversal. However, the reversal order is not always linear,
and an example pattern is shown in P3 in Table 1. Consider a
sequence of database operations (i.e., set/get) followed by a

device function that pushes the computed configurations (i.e.,
apply). Suppose that all these operations succeed, but the
next one after them fails, Occam must recover the database
state first and only then update the device configurations to
a clean state. In other words, in this case, the reversal order
and the execution order are the same.

From the dataset, we found that a correct order of reversal
depends on the semantics of the management operations.
We have therefore devised a solution that works by a pat-
tern matching process. Table 1 shows the pattern matching
rules that process an execution log and suggests a repair
plan. This algorithm associates a “type” with a subset of
special device functions (i.e., apply(func)) to delineate pat-
tern boundaries: (a) PUSH_CFG labels device functions that
push configurations to physical devices (e.g., f_push); (b)
DRAIN and UNDRAIN label functions that bring devices of-
fline or online; (c) PREPARE and UNPREPARE denote functions
that set up and tear down temporary test environments (e.g.,
alloc_test_ip, dealloc _test_ip); and (d) TEST denotes
functions that perform a specific test (e.g., run_ping). The
DB_CHANGE denotes set calls instead of apply(func) calls.

With these types, an execution log comprises a sequence of
operation steps (P1). Each such step is either a configuration
change to an active device, an offline maintenance operation,
or a testing operation (P2). A configuration change further in-
volves a series of database updates (P3). Offline maintenance
requires the entire device or some interfaces to be drained
before and undrained after the maintenance procedure (P4),
and it may include a series of operations of type P1. Testing
can include one or more rounds (e.g., physical-layer to IP-
layer tests). Before these tests, temporary environments are
set up (e.g., a temporary IP address is allocated to the device
to ensure it is accessible), and they are torn down after test-
ing (P5). When a sequence of operations fail in the middle,
Occam will match the operations against a set of rules in
Table 1 and identify broken sequences that cause pattern
mismatches, as shown in P6-P10 in Table 1. Based on these
rules, Occam will generate a “syntax tree”-like data structure
for the logged execution. Occam suggests a repair by walk-
ing the tree, based on the reversal rules for each mismatch,
to generate a concrete recovery plan. In essence, this plan

EuroSys ’24, April 22–25, 2024, Athens, Greece Xing and Hsu, et al.

Label Example Occam APIs

DB_CHANGE set(·)
PUSH_CONFIG apply(f_push)

DRAIN apply(f_drain)

UNDRAIN apply(f_undrain)

PREPARE apply(f_alloc_ip)

UNPREPARE apply(f_dealloc_ip)

TEST apply(f_ping_test), apply(f_optic_test)

Table 2. Operations used in a firmware upgrade task, with
each operation annotated with types for pattern matching.

will undo broken subsequences first, and then recursively
fix their enclosing sequences.
We now consider a concrete example of performing a

firmware upgrade, where the relevant device functions as
well as their types are shown in Table 2. This task drains traf-
fic from selected devices (f_drain), changes the firmware
based on the database state (e.g., firmware version and its
binary location) (set), pushes device configuration (f_push),
prepares testing environment such as temporary IP addresses
(f_alloc_ip), executes tests such as ping to check connec-
tivity and fiber optic testing (f_ping_test, f_optic_test),
releases testing environment (f_dealloc_ip), and finally
undrains the traffic back (f_undrain) to the selected devices.

Now let us consider a scenario where f_optic_test has
failed—the task execution stops at: f_drain→ set→ set→
f_push→ f_alloc_ip→ f_ping_test→ f_optic_test
→ X, where the last step X denotes that f_optic_test has
failed. To generate the rollback plan, Occam labels the se-
quence using types shown in Table 2, obtaining DRAIN→
DB_CHANGE→ DB_CHANGE→ PUSH_CONFIG→ PREPARE→
TEST→ TEST. Then, it constructs the “syntax tree”, as shown
in Figure 6, by recursively matching the sequence into the
failure pattern, using the rules in Table 1. This process is akin
to how a compiler parses an input program into its syntax
tree. Concretely, the failure pattern b_seq (i.e., the root of
the tree in Figure 6) matches the second case of P6, b_step,
thus we get the rollback plan r(b_step). Following that,
b_step matches the second case of P7, b_offline, produc-
ing r(b_offline). Next, b_offline matches the first case
of P9, DRAIN seq, and therefore its rollback plan is r(seq)
→ UNDRAIN. The recursive construction will continue on
r(seq). Eventually, we will construct a complete rollback
plan: UNPREPARE → r(DB_CHANGE) → r(DB_CHANGE)
→ PUSH_CFG → UNDRAIN.

7 Implementation
The Occam emulation and simulation platform is closely
modeled after that in Meta (Figure 7). It consists of 7100 lines
of code and has been released in open source [42]. It can
configure network topologies of various sizes in Mininet [14]
with software switches [32]. Occam tasks invoke the stateful
API exposed by the frontend, which eventually communi-
cates with the network databases and devices via RPC. For

drainDRAIN

b_step

b_offline

EOFb_sequence

step

b_step

config_change

b_sequence

db_list PUSH_ CONFIG

db_list DB_CHANGE

DB_ CHANGE

b_testing

PREPARE EOFtest_list

test_list TEST

TEST

apply(f_push)

set(·)

set(·)

apply(f_alloc_ip)

apply(f_ping_test)

apply(f_optic_test)

applly(f_drain)

sequence

Figure 6. The “syntax tree” of the firmware upgrade failure.

large-scale experiments, Occam also provides an event-based
simulator that can create representative Occam workloads
based on user-configured task arrival rates and network
scopes. The Occam runtime also caches frequently-used
regexes and their translated automata.
The key implementation challenge is to identify a set of

key components in the Meta network, and then construct an
experimental platform that closely emulates this production
setting. To this end, we have engaged with engineers at
Meta to understand their network management architecture.
We then emulate the system using open-source software
components. Prior to Occam, we are not aware of a publicly
available system modeled after realistic production setups
for network management. Thus, we believe that our system
could serve a playground for researchers to conduct future
network management experimentation in the future.

7.1 Implementation details
Emulation. At the heart of this platform is the Occam man-
agement plane, which interacts with the control and data
planes of individual devices. Management tasks are pro-
grammed against the OccamAPI to interact with the network
(shown as “frontend” in Figure 7). The Occam backend is the
runtime system, which is in charge of scheduling and locking.
The management plane services are also part of the runtime
system, which eventually executes the stateful API by query-
ing the source-of-truth databases and interacting with indi-
vidual switches for device-level command and configuration.
In our platform, control and data plane emulation builds
upon the open-source Mininet codebase [14], which can
support different topologies and different software switch
models. Our setup uses software bmv2 [32] programmable
switches for individual devices. Control plane emulation
relies on the P4Runtime interface [33], which enables the
individual switches to communicate with the centralized
Occam platform via RPC. The Occam tasks invoke the state-
ful API via the runtime system, which eventually reaches

Occam: A Programming System for Reliable Network Management EuroSys ’24, April 22–25, 2024, Athens, Greece

Mgmt. plane services

Switch 1

Data plane

DB

ConfigDevice Control plane

CommandDevice

AutoConfig

…

Occam backend

Scheduler Logger

FailureReporter

save_config,

reload_config,

run_config

P4Runtime

get_cp_ver,

insert_entry,

delete_entry

Switch 2

Switch 3

…

Occam frontend

Task

Network

Task

NetworkNetwork

apply

get,

set

apply

apply

A

P

I

Switch 4

Running processes Network objects

Figure 7. Architecture of the Occam platform.
the devices to execute the various commands. Occam also
contains utility functions to instantiate Fat-trees of various
sizes and to configure the topology with ECMP forwarding.

Simulation. For large-scale experiments, Occam also pro-
vides an event-based simulator that can create representative
Occamworkloads based on user-configured task arrival rates
and network scopes. The default workload parameters are
based upon the Meta trace, but new distributions can be eas-
ily added. The simulator can be configured with three lock
granularities: DC locks, device locks, and network object
locks. For each level of granularity, it further supports two
scheduling policies: FIFO and LDSF. Thus, in total, the simu-
lator supports six different schedulers. Occam leverages an
open-source library [34] for regex operations. Regexes are
eventually translated into finite state machines (FSMs) for
intersection and other regex operations. Occam also caches
recently seen regexes and their FSMs. The Occam simula-
tor only simulates the runtime scheduling algorithms but it
does not interact with emulated network devices, for more
scalable experimentation.

8 Evaluation
We now evaluate Occam using simulation, emulation, as well
as a set of case studies to demonstrate its effectiveness.

8.1 Simulation at scale
We start by a set of simulation to understand how Occam
improves network management at scale. We created a net-
work topology with 16 datacenters, each with 96 pods and 92
switches, which is at a scale that matches the Meta dataset.

Synthesized workloads and baseline. To synthesize the
simulation workloads, we have obtained a longer trace from
Meta (5 months). This trace contains detailed data about the
distribution of task execution times, task arrival times, as
well as the network regions that the management tasks op-
erate on. We then synthesize each simulation experiment by
randomly sampling these distributions to derive an appropri-
ate set of management task parameters. For each simulation
run, we synthesize 2000 management tasks with different ar-
rival times, execution times, target network scopes (regexes),
and read/write ratio, for evaluation. To the best of our knowl-
edge, there is no open-sourced network management tool

that can fulfill our experimental purpose. Therefore, we com-
pare our design against a naïve version of Occam, where
per-device and per-datacenter (DC) locks are used together
with the scheduling algorithm.

Task completion times. Figure 8 measures the task com-
pletion times under different Occam scheduling granularities.
For this experiment, Occam uses LDSF for lock scheduling
and grants available locks to the task with the largest de-
pendent set. A task starts execution when it has obtained all
necessary locks. As Figure 8a shows, datacenter-level lock-
ing severely constrains concurrency, as at most one X lock
can be held per datacenter. Device-level locking significantly
improves this and reduces the average task completion time
from 312 hours to 129 hours. The multi-granularity, object-
level locking strategy performs the best, further reducing the
average task completion time to 31 hours (24% of that with
device-level locks). We found that this is because when locks
are granted to a task for each device individually, it misses
the bigger picture at the task level. Consider a task that holds
a set of device locks L1 and waits for L2. This unnecessarily
blocks other tasks that wait for locks in L1. Object-level locks
avoid this problem most of the time—in the absence of splits,
it always grants a batch of locks as exactly needed by a task.
Task waiting times. Figures 8b-c zoom in on the task

waiting times and queue lengths, respectively. In each case,
datacenter-level locks are outperformed by device-level locks,
which in turn are dominated by network object-level locks.
The difference is drastic: the 90th percentile waiting times
for datacenter-level locks is 1037 hours, while object-level
and device-level do not experience any waiting time for
more than 91% and 94% management tasks, respectively.
We also show how queue lengths increase much slower in
object-level locking, at a peak of 62 waiting tasks; per-device
and per-DC locking strategies reach 134 and 730 tasks, re-
spectively. In each case, the queue length drops when no
additional tasks arrive until the queues clear.
More workloads. We stress test Occam by scaling the

task arrival rate by 2, 4, and 6 times, respectively. Figure 9a
shows the task completion times with scale factor of four.
Scale factors two and six show similar trends, so figures are
omitted. Network object-level locking reduces the average
completion time by 4.7-7.1× compared to datacenter-level
locks, and by 1.7-4.0× compared to device-level locks. We
further test write-heavy and read-heavy workloads (each
set to be around 95%), respectively, and show the results
in Figure 9b and 9c. In both cases, datacenter-level locks
are outperformed by the other two strategies. With more
reads (thus fewer task-level conflicts), device-level and object-
level locks perform similarly to each other. Overall, the task
completion times are smaller for read-heavy workloads as
they produce fewer conflicts.
Scheduling overheads. Using the Meta trace, we have

also measured the scheduling overheads (the time it takes to
run the Sched function) for different lock granularities. As

EuroSys ’24, April 22–25, 2024, Athens, Greece Xing and Hsu, et al.

 0
 20
 40
 60
 80

 100

10-2 1 102 104

C
D

F
(%

)

Time (hours, logscale)

DC lock
Dev lock
Obj lock

(a) Task completion time

 0
 20
 40
 60
 80

 100

10-2 1 102 104

C
D

F
(%

)

Time (hours, logscale)

DC lock
Dev lock
Obj lock

(b) Task waiting time

 0
 200
 400
 600
 800

 1000

1 101 102 103 104

Q
ue

ue
 le

ng
th

 (#
 ta

sk
)

Time (hours, logscale)

DC lock
Dev lock
Obj lock

(c) Task queue length

Figure 8. The scheduling effectiveness of Occam for the Meta dataset (when LDSF is used). The multi-granularity locking
strategy (Obj lock) outperforms fixed-granularities, either at a per-device (Dev lock) or per-datacenter (DC lock) level.

 0
 20
 40
 60
 80

 100

10-2 1 102 104

C
D

F
(%

)

Time (hours, logscale)

DC lock
Dev lock
Obj lock

(a) Arrival rate (scale factor: 4)

 0
 20
 40
 60
 80

 100

10-2 1 102 104

C
D

F
(%

)

Time (hours, logscale)

DC lock
Dev lock
Obj lock

(b) Write heavy (write ∼95%)

 0
 20
 40
 60
 80

 100

10-2 1 102 104

C
D

F
(%

)

Time (hours, logscale)

DC lock
Dev lock
Obj lock

(c) Read heavy (read ∼95%)

Figure 9. The scheduling effectiveness of Occam for more different workloads (when LDSF is used): (a) scales the Meta trace
in terms of the arrival rate by four times; (b) write heavy workloads; (c) read heavy workloads.

 0
 20
 40
 60
 80

 100

 1 10 100 1000

C
D

F
(%

)

Time (ms, logscale)

DC lock
Dev lock
Obj lock

(a) Scheduling overhead

100
101
102
103
104
105
106

10-2 10-1 100 101 102 103 104#
ac

tiv
e

ob
js

 (l
og

sc
al

e)

Time (hours, logscale)

DC lock
Dev lock
Obj lock

(b) Active network objects

 0
 20
 40
 60
 80

 100

10-1 100 101 102 103 104 105

C
D

F
(%

)

Time (ms, logscale)

Insertion
Deletion

(c) Tree maintenance overhead

Figure 10. The scheduling overhead of Occam with different lock granularities (when LDSF is used). (a) shows scheduling
times, where scheduling with fewer locks is faster; (b) shows the number of active scheduling objects over time; scheduling
objects are either datacenters, devices, or network objects; X-axis is the scheduling steps, one invocation per step; (c) is a
breakdown for the network object tree maintenance cost for insertions and deletions.

Figure 10a shows, having fewer locks results in lower over-
heads: datacenter-level locking is the fastest, device-level
locking is the slowest, and network object-level locking falls
in between. Across all granularities, the scheduling overhead
is low and decisions are computed under 100ms. Figure 10b
further plots how the number of scheduling units (i.e., de-
vices, datacenters, or objects) grows over time, with similar
trends as above. We can see that device-level locking pro-
duces 1-2 orders ofmagnitudemore objects. Figure 10c shows
the time it takes to maintain the network object tree, measur-
ing the insertion and deletion time for an object. Insertion
takes a longer time as it needs to perform regex comparison.

Scheduling policies. In the above experiments, we found
that FIFO and LDSF scheduling policies perform similarly
with each other and therefore FIFO lines were omitted. We

also found that with skewed contention regions, LDSF out-
performs FIFO. Figure 11a shows the waiting times obtained
on a synthetic trace with skewed contention, with two obser-
vations. First, LDSF can prioritize contention regions and this
leads to better performance. Second, device- and object-level
locks perform similarly because the containment relations
are fewer (due to the skewed contention regions) and the
object-level analysis does not add significant benefits. Fig-
ure 11b shows the scheduling overheads for each policy. We
found that FIFO and LDSF have similar performance when
locking at the object level because the number of scheduling
objects is sufficiently small. With device-level locks, which
produce more scheduling objects, LDSF performs slower as
its policy is more complex.

Occam: A Programming System for Reliable Network Management EuroSys ’24, April 22–25, 2024, Athens, Greece

 0
 20
 40
 60
 80

 100

1 101 102 103 104

C
D

F
(%

)

Time (hours, logscale)

Dev LDSF
Obj LDSF
Dev FIFO
Obj FIFO

(a) Waiting time

 0
 20
 40
 60
 80

 100

10-3 10-1 101 103

C
D

F
(%

)

Time (ms, logscale)

Dev LDSF
Obj LDSF
Dev FIFO
Obj FIFO

(b) Schedule overhead

Figure 11. LDSF outperforms FIFO when tasks have skewed
dependent set. Network object locking is faster than device-
level locking, which requires a large amount of locks.

才

才

N
o

rm
.

tr
a

ff
ic

 r
a

te

Up

Down

D
e

v
ic

e
 s

ta
te

Time (s)

Figure 12. Traffic rates and device states during up-
grade_data_plane (Task 1), and turn_up_links (Task 2).

8.2 Emulation case studies
Next, we evaluate Occam with concrete use cases. For our
emulation, we created a k=6 Fat-tree datacenter with 18 ToR
switches, 18 aggregation switches, and 9 core switches. Each
switch is running a P4 program that performs ECMP routing,
and end hosts communicate with each other via UDP. We
also verify Occam’s ability to assist in generating rollback
plans with a specific failure example.

Case study #1: Conflicts between switch program up-
grade and link turnup. Both are typical tasks in the Meta
dataset. The upgrade_data_plane task drains traffic from a
target switch, upgrades the switch data plane program, and
finally undrains the traffic. The turn_up_link task attempts
to activate a link for the same switch. We measure traffic
rates at this switch during the management tasks, and run ex-
periments with and without locking. As Figure 12 shows, in
the absence of locks, the turn_up_links program restores the
traffic back after the upgrade_data_plane task drains the traf-
fic. Thus, during the program upgrade, user traffic is dropped
by the switch, causing service disruption. In contrast, with
Occam’s locking mechanism, the two tasks are isolated from
each other and correctly executed.
Case study #2: Concurrent tasks with FIFO/LDSF

scheduling. This emulation zooms in on the differences
between FIFO and LDSF scheduling with four management
tasks. A middlebox_rerouting task (task 1) that reroutes a
certain type of traffic to middleboxes, two ping_test tasks

才

(a) Traffic rate (normalized to background traffic) while
running tasks (Only show LDSF as FIFO has similar results)

Task 1

Task 2

Task 3

Task 4

Time

Task1 starts Task1 done,
task2 starts

Task2 done,
task3 starts Task2 done,

task3 starts

All task done

Task1 starts
Task1 done,
task3 starts Task3 done,

task2&task4 start

All task done

Time saved

Task 1

Task 2

Task 3

Task 4

Running Pending

Task1: dc1.pod0.edge0 Task2: dc1.pod0.(aggr|edge)[012]

Task3: dc1.pod[0-6].edge0 Task4: dc1.pod1.(aggr|edge)[012]

(b) Scheduling timeline

Figure 13. Traffic rate and scheduling timeline of FIFO and
LDSF. (a) shows that there is no traffic disruption when run-
ning the management tasks. (b) explains why LDSF can save
waiting time when multiple tasks with different dependent
set waiting for the same object.

to check connectivity (tasks 2 and 4), and a denylist task
that blocks suspicious traffic (task 3). Tasks 1-4 arrive in or-
der and they operate on overlapping network regions. We
perform the emulation twice, with FIFO and LDSF policies,
respectively. Figure 13a shows the traffic rate at the over-
lapped switches. As we can see, the background traffic rate
remains stable; the traffic rate for the blocked flows goes
to zero; rerouted traffic is also stable before and after it is
rerouted to the middlebox. These measurements show that
Occam have handled the conflicts correctly. Figure 13b fur-
ther plots the concrete scheduling events. From this timeline,
we can see the different decisions computed by the sched-
ulers, when two tasks 2 and 3 were both blocked by task 1
due to the contention on acquiring a lock at the same device.
The FIFO policy chose task 2 because it requested the lock
earlier than task 3; on the other hand, the LDSF policy chose
task 3, because task 2 did not block any other tasks (i.e., its
dependency set is one), but task 3 blocked task 4 (i.e., its
dependency set size is two). This is a concrete example of the
contention-aware analysis as afforded by LDSF. This in turn
shortens the total waiting time of concurrent management
tasks under LDSF.

EuroSys ’24, April 22–25, 2024, Athens, Greece Xing and Hsu, et al.

Case study #3: Network regions of different sizes. In
this case study, we emulate management tasks that operate
on network regions of different sizes, e.g., whole pods, all
aggregation switches, and whole DC. We created multiple
such tasks in our emulator, and validated their correctness
by examining their functional effectiveness and monitoring
the absence of traffic disruption. We omit the timeseries as
the patterns are similas as in case studies #1-#2.
Rollback plan generation.We use the same firmware

upgrade task discussed in §6 as an example. The task drains
traffic from selected devices, changes the firmware based
on the database state (e.g., firmware version and firmware
binary location), pushes device configuration, prepares test-
ing environment such as temporary IP addresses, executes
tests such as ping to check connectivity, releases testing
environment, and finally undrains the traffic back to the
selected devices. We have injected failures at each step of
the execution and examined the rollback plan suggested by
the Occam system. For each failure point, Occam is able to
use the pattern-matching algorithm to suggest a series of
concrete steps to undo the effects. We have manually verified
that following these steps will result in the correct rollback
of the database and device state.

8.3 Meta case studies
Next, we port three Meta programs to Occam and deploy it to
the Meta datacenter. The original Meta programs invoke the
existingmanagement services andAPIs provided by theMeta
workflow system. The ported programs, on the other hand,
rely on the Occam APIs. Both operate on real datacenters
and services running in Meta. We compare the lines of code
needed to perform stateful operations on the network to
complete the tasks in the existing and Meta platforms.
Case study #4: It sets up test IP addresses on devices,

conduct connectivity tests for these devices, and then deal-
locates the addressed upon successful tests. Interleaving of
the same workflow on the same link can cause one work-
flow’s allocated IP addresses to be deallocated by the other.
From our interview with network operators, this has been a
cause of several tickets in production. The original program
requires 131 LoC to invoke stateful service to modify the
network and devices, and Occam reduces it to 6.

Case study #5: It queries the Meta database to determine
device health, change link states to active, generate configu-
rations, and then monitor the results. This is a representative
and frequently used workflow managing backbone devices.
The original program has 307 lines of service invocation code
and Occam reduces this to 11.

Case study #6: It changes device states, creates configura-
tions for the affected devices, and then deploys the configura-
tions. This is a representative and frequently used workflow
managing datacenter devices. Occam reduces the lines of
service invocation code from 311 to 6.

9 Related Work
Automated networkmanagement.Networkmanagement
has received a lot of attention over the years [2, 7, 11, 13, 17,
22, 24, 26, 29, 38, 39, 41], and recent systems as exemplified
by AT&T’s CORNET [28], Google’s ZTN [25], and Alibaba’s
NetCraft [27] have made significant progress in automation
using workflow systems. Occam is inspired by workflow
automation [28], but develops a programming system to
shield operators from reliability concerns, which are auto-
matically handled in its runtime. Researchers have developed
programming abstractions for the network control and data
planes [8, 23, 35–37], but Occam targets the management
plane, which has received much less attention [1].
Datacenter management. Datacenter infrastructures

and tasks are provisioned andmanaged using domain-specific
tools. For instance, tools like Terraform [6], Pulumi [5], and
OpenTofu [4] programmatically define the infrastructure in
a domain-specific configurations, and orchestration tools
like Kubernetes [3] provide support for task scheduling and
execution. Compared to these tools, Occam is a system that
is tailored for network management tasks.

Programming systems. Using a programming system to
shield peripheral concerns is inspired by systems like MapRe-
duce [15] for data processing tasks, Ray [31] for AI/ML
workloads, Sapphire [43] for mobile/cloud distributed ap-
plications, and dSpace [19] for smart buildings. By shifting
low-level issues to the framework level, programmers can
focus on developing the key business logic instead. In Occam,
the network objects separate stateful and stateless computa-
tion, and have resemblance to actor-based systems [31].
Transactions and recovery. Occam borrows database

techniques for transaction processing, including multi gran-
ularity locking [21], actor-based databases [16], and write-
ahead logging [30]. It adapts these techniques to the context
of network management for transactional semantics. Roll-
back recovery has been studied in this setting [30], but man-
agement tasks are more complex than database operations.

10 Conclusion
In this paper, we have presented Occam, a workflow system
aiming at achieving reliable network management. Occam
provides a programming system that shields programmers
from reliability concerns, and its runtime handles locking
and scheduling, and assists failure recovery systematically.
Our evaluation in simulation, emulation, and real-world case
studies shows that Occam is able to schedule management
tasks effectively and efficiently and that the reliability con-
cerns are correctly handled by the framework.

Acknowledgments:We thank our shepherd, RichardMortier,
and the anonymous reviewers for their insightful feedback.
This work was supported by NSF grants CNS-2420309, CNS-
2345339, CNS-2214272, CNS-2106338, CCRI-2016727, a Google
PhD Fellowship, and a VMware Early Career Faculty grant.

Occam: A Programming System for Reliable Network Management EuroSys ’24, April 22–25, 2024, Athens, Greece

References
[1] Aditya Akella and Ratul Mahajan. 2014. A Call to Arms for Manage-

ment Plane Analytics. In Proc. HotNets.
[2] Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, Chris Harshaw, Amin

Vahdat, and Minlan Yu. 2019. Risk based planning of network changes
in evolving data centers. In Proc. SOSP.

[3] The Kubernetes Authors. 2024. [Kubernetes] Production-Grade Con-
tainer Orchestration. (2024). https://kubernetes.io/.

[4] The OpenTofu Authors. 2024. OpenTofu: The open source infrastruc-
ture as code tool. (2024). https://opentofu.org/.

[5] The Pulumi Authors. 2024. Pulumi: Infrastructure as code in any
programming language. (2024). https://www.pulumi.com/.

[6] The Terraform Authors. 2024. Terraform by Hashicorp. (2024). https:
//www.terraform.io/.

[7] Hitesh Ballani and Paul Francis. 2007. Conman: a step towards network
manageability. ACM SIGCOMM Computer Communication Review 37,
4 (2007), 205–216.

[8] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. 2016. Don’t mind the gap: Bridging network-wide
objectives and device-level configurations. In Proc. SIGCOMM.

[9] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987.
Concurrency Control and Recovery in Database Systems. Addison-
Wesley.

[10] Cezar Câmpeanua and Nicolae Santeanb. 2009. On the intersection of
regex languages with regular languages. Theoretical Computer Science
(2009).

[11] Xu Chen, Yun Mao, Z. Morley Mao, and Kobus van der Merwe. 2010.
Declarative Configuration Management for Complex and Dynamic
Networks. In Proc. CoNEXT.

[12] Xu Chen, Z. Morley Mao, and Jacobus Van der Merwe. 2009. PACMAN:
a Platform for Automated and Controlled network operations and
configuration MANagement. In Proc. CoNEXT.

[13] Rithvik Chuppala, Silvery Fu, and Sylvia Ratnasamy. 2023. DB-
Net: Leveraging DBMS for Network Automation. arXiv preprint
arXiv:2308.15780 (2023).

[14] Mininet Project Contributors. 2023. Mininet. (2023). http://mininet.or
g/.

[15] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data
processing on large clusters. In Proc. OSDI.

[16] Tamer Eldeeb and Phil Bernstein. 2016. Transactions for Distributed
Actors in the Cloud. Technical Report: MSR-TR-2016-1001 (2016).

[17] William Enck, Thomas Moyer, Patrick McDaniel, Subhabrata Sen,
Panagiotis Sebos, Sylke Spoerel, Albert Greenberg, Yu-Wei Eric Sung,
Sanjay Rao, and William Aiello. 2007. Configuration management at
massive scale: System design and experience. In Proc. USENIX ATC.

[18] The Apache Software Foundation. 2023. Apache Airflow. (2023).
https://airflow.apache.org/.

[19] Silvery Fu and Sylvia Ratnasamy. 2021. dSpace: Composable Abstrac-
tions for Smart Spaces. In Proc. SOSP.

[20] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and
Amin Vahdat. 2016. Evolve or Die: High-Availability Design Principles
Drawn from Google’s Network Infrastructure. In Proc. SIGCOMM.

[21] J. Gray, R. Lorie, and G. Putzolu. 1975. Granularity of Locks in a Shared
Data Base. In Proc. VLDB.

[22] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving High
Utilization with Software-Driven WAN. In Proc. SIGCOMM.

[23] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen
Tammana, and David Walker. 2020. Contra: A Programmable System
for Performance-aware Routing. In Proc. NSDI.

[24] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul
Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. 2014.
Dynamic scheduling of network updates. ACM SIGCOMM Computer
Communication Review 44, 4 (2014), 539–550.

[25] Bikash Koley. 2016. The zero touch network. (2016).
[26] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wat-

tenhofer, and David Maltz. 2013. zUpdate: Updating data center net-
works with zero loss. In Proc. SIGCOMM.

[27] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang,
Hui Xu, Lei Zhou, Qing Ma, and Ming Zhang. 2018. Automatic Life
Cycle Management of Network Configurations. In Proc. SIGCOMM
SelfDN Workshop.

[28] Ajay Mahimkar, Carlos Eduardo de Andrade, Rakesh Sinha, and
Giritharan Rana. 2021. A composition framework for change manage-
ment. In Proc. SIGCOMM.

[29] Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Dou-
glas Turk, Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with
modeling network topologies at multiple levels of abstraction. In Proc.
NSDI.

[30] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. 1992.
ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM
Transactions on Database Systems 17, 1 (1992).

[31] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing AI applications. In Proc. OSDI.

[32] p4lang. 2023. P4 behavioral model. (2023). https://github.com/p4lan
g/behavioral-model.

[33] p4lang. 2023. P4Runtime. (2023). https://p4.org/p4-runtime/.
[34] qntm. 2023. FSM/Regex conversion library. (2023). https://github.c

om/qntm/greenery.
[35] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and

David Walker. 2012. Abstractions for network update. In Proc. SIG-
COMM.

[36] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. 2011.
Consistent Updates for Software-Defined Networks: Change You Can
Believe In!. In Proc. HotNets.

[37] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone,
Robert Kleinberg, Emin Gun Sirer, and Nate Foster. 2014. Merlin: A
language for provisioning network resources. In Proc. CoNEXT.

[38] Peng Sun, Ahsan Arefin, Ratul Mahajan, Jennifer Rexford, Lihua Yuan,
and Ming Zhang. 2014. A network-state management service. In Proc.
SIGCOMM.

[39] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HYWong, and Hongyi Zeng.
2016. Robotron: Top-down network management at facebook scale.
In Proc. SIGCOMM.

[40] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant Schoenebeck.
2018. Contention-aware lock scheduling for transactional databases.
In Proc. VLDB.

[41] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming
Zhang, et al. 2019. Safely and automatically updating in-network ACL
configurations with intent language. In Proc. SIGCOMM.

[42] Jiarong Xing, Kuo-Feng Hsu, Yiting Xia, Yan Cai, Yanping Li, Ying
Zhang, and Ang Chen. 2024. Occam open-source release. (2024).
https://github.com/jiarong0907/Occam.

[43] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac Ackerman,
Steven D. Gribble, Arvind Krishnamurthy, and Henry M. Levy. 2014.
Customizable and Extensible Deployment for Mobile/Cloud Applica-
tions. In Proc. OSDI.

https://kubernetes.io/
https://opentofu.org/
https://www.pulumi.com/
https://www.terraform.io/
https://www.terraform.io/
http://mininet.org/
http://mininet.org/
https://airflow.apache.org/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
P4 Runtime
https://github.com/qntm/greenery
https://github.com/qntm/greenery
https://github.com/jiarong0907/Occam

	Abstract
	1 Introduction
	2 Insights from a Production Network
	2.1 Network management practices
	2.2 Workflow characterization
	2.3 Reliability gaps
	2.4 Motivation for Occam

	3 The Occam Programming Model
	3.1 Data model: Network objects
	3.2 Programming Occam tasks
	3.3 Occam by examples

	4 Multi-Granularity Locking
	4.1 Occam tasks
	4.2 Object/Task dependency graph
	4.3 Network object tree operations
	4.4 Multi-granularity locking

	5 Contention-Aware Scheduling
	6 Assisting Failure Recovery
	7 Implementation
	7.1 Implementation details

	8 Evaluation
	8.1 Simulation at scale
	8.2 Emulation case studies
	8.3 Meta case studies

	9 Related Work
	10 Conclusion
	References

